Project description:Meta-proteomics analysis approach in the application of biogas production from anaerobic digestion has many advantages that has not been fully uncovered yet. This study aims to investigate biogas production from a stable 2-stage chicken manure fermentation system in chemical and biological perspective. The diversity and functional protein changes from the 1st stage to 2nd stage is a good indication to expose the differential metabolic processes in anaerobic digestion. The highlight of identified functional proteins explain the causation of accumulated ammonia and carbon sources for methane production. Due to the ammonia stress and nutrient limitation, the hydrogenotrophic methanogenic pathway is adopted as indicative of meta-proteomics data involving the key methanogenic substrates (formate and acetate). Unlike traditional meta-genomic analysis, this study could provide both species names of microorganism and enzymes to directly point the generation pathway of methane and carbon dioxide in investigating biogas production of chicken manure.
2021-02-08 | PXD022498 | Pride
Project description:Anaerobic digestion of pig manure and vinegar residue
Project description:The fungal RNA from 6 different conditions, especially one that mimics the plant environment (Barley Straw Agar –BSagar) was also sequenced to help in one hand the annotation and in other hand to uncover putative gene of interest that might be involved in the pathogenicity or the fungicide resistances for example.
Project description:Here comparative transcriptomic analyses of Penicillium oxalicum grown on wheat bran (WB), WB plus rice straw (WR) and WB plus Avicel (WA) as the sole carbon source under solid-state fermentation (SSF) revealed that most of differentially expressed genes (DEGs) were involved in metabolism specifically carbohydrate metabolism.
Project description:We have examined and compared the transcriptome of T. reesei growing on wheat straw and lactose as carbon sources under otherwise similar conditions. Gene expression on wheat straw exceeded that on lactose, and 1619 genes were found to be only induced on wheat straw but not on lactose. They comprised 30 % of the CAZome, but were also enriched in genes associated with phospholipid metabolism, DNA synthesis and repair and iron homeostatis. Two thirds of the CAZome was expressed both on wheat straw as well as on lactose, but 60 % of it at least >2-fold higher on the former. Major wheat straw specific genes comprised xylanases, chitinases and M-CM-^_-mannosidases. Interestingly, the latter two CAZyme families were significantly higher expressed in a strain in which xyr1 encoding the major regulator of cellulase and hemicellulase biosynthesis is non-functional, demonstrating that XYR1 is a repressor of these genes. We used two biological replicas of four T. reesei strains growing on glucose, lactose, and on wheat straw
Project description:We have examined and compared the transcriptome of T. reesei growing on wheat straw and lactose as carbon sources under otherwise similar conditions. Gene expression on wheat straw exceeded that on lactose, and 1619 genes were found to be only induced on wheat straw but not on lactose. They comprised 30 % of the CAZome, but were also enriched in genes associated with phospholipid metabolism, DNA synthesis and repair and iron homeostatis. Two thirds of the CAZome was expressed both on wheat straw as well as on lactose, but 60 % of it at least >2-fold higher on the former. Major wheat straw specific genes comprised xylanases, chitinases and ß-mannosidases. Interestingly, the latter two CAZyme families were significantly higher expressed in a strain in which xyr1 encoding the major regulator of cellulase and hemicellulase biosynthesis is non-functional, demonstrating that XYR1 is a repressor of these genes.
Project description:Comparative transcriptional profiling of N. crassa grown on five major crop straws of China (barley, corn, rice, soybean and wheat straws) revealed a highly overlapping group of 430 genes, the Biomass commonly Induced Core Set (BICS). A large proportion of induced carbohydrate-active-enzyme (CAZy) genes (82 out of 113) were also conserved across the five plant straws. Excluding 178 genes within the BICS that were also up-regulated under no-carbon conditions, the remaining 252 genes were defined as the Biomass Regulon (BR). Interestingly, 88 genes were only induced by plant biomass and not by three individual polysaccharides (Avicel, xylan, and pectin); these were denoted as the Biomass Unique Set (BUS). Deletion of one BUS gene, the transcriptional regulator rca-1, significantly improved lignocellulase production using plant biomass as the sole carbon source, possibly functioning via de-repression of the regulator clr-2. Thus, this result suggests that rca-1 is a potential engineering target for biorefineries, especially for plant biomass direct microbial conversion processes. Conidia of Neurospora crass wild type were inoculated at 10^6 conidia/mL into 100 mL 1×Vogel’s salts with 2% (w/w) ground crop straws, barley straw, corn straw, rice straw, soybean straw and wheat straw respectively for 30 h or 2% sucrose for 16 h. Then, mycelia were harvested through filtration and immediately frozen in liquid nitrogen.Total RNA from frozen sample was isolated with TRIzol reagent (Invitrogen) and further treated with DNase I (RNeasy Mini Kit, QIAGEN). The qualified RNA was prepared with standard protocol from Shenzhen BGI (China) and sequenced on the Illumina HiSeqTM 2000 platform.