Project description:We present results from deep sequencing of small RNA populations from several genotypes of soybean and demonstrate that the CHS siRNAs accumulated only in the seed coats of the yellow varieties having either the dominant I or i-i alleles and not in the pigmented seed coats with homozygous recessive i genotypes. However, the diagnostic CHS siRNAs did not accumulate in the cotyledons of genotypes with the dominant I or i-i alleles thus demonstrating the novelty of an endogenous inverted repeat region of CHS genes driving RNA silencing in trans of non-linked CHS family members in a tissue-specific manner. The phenomenon results in inhibition of a metabolic pathway by siRNAs in one tissue allowing expression of the flavonoid pathway and synthesis of secondary metabolites in other organs as the chalcone synthase small RNAs are found in the seed coats of yellow seeded soybean varieties but not in the cotyledons of the same genotype. In order to compare the population of chalcone synthase related small RNAs, we sequenced 3 to 6 million small RNAs using the Illumina Genome Analyzer from the following four soybean cultivars and tissues with specific genotypes at the I locus: Richland immature seed coats (homozygous for the dominant I allele that specifies yellow seed coat); Williams immature seed coats (homozygous for the dominant i-i allele that specifies yellow seed coat with pigmented hilum) Williams (i-i/i-i yellow) immature cotyledons (homozygous for the dominant i-i allele that specifies yellow seed coat with pigmented hilum); Williams 55 immature seed coats (a Williams isogenic line homozygous for the recessive i allele that specifics pigmented seed coats. All seed coats and cotyledons were dissected from green stage immature seeds within the fresh weight range of 50-75 mg.
Project description:We profiled the global gene and miRNA expression in soybean following infections by three different Soybean mosaic virus (SMV) isolates, L (G2 strain), LRB (G2 strain) and G7 (G7 strain) by small RNA (sRNA)-seq, degradome-seq and as well as a genome-wide transcriptome analysis.
Project description:Transcriptional changes in soybean plants infected with Soybean mosaic virus (SMV) was assessed at 7, 14 and 21 days post inoculation (dpi). Keywords: Time course
Project description:We present results from deep sequencing of small RNA populations from several genotypes of soybean and demonstrate that the CHS siRNAs accumulated only in the seed coats of the yellow varieties having either the dominant I or i-i alleles and not in the pigmented seed coats with homozygous recessive i genotypes. However, the diagnostic CHS siRNAs did not accumulate in the cotyledons of genotypes with the dominant I or i-i alleles thus demonstrating the novelty of an endogenous inverted repeat region of CHS genes driving RNA silencing in trans of non-linked CHS family members in a tissue-specific manner. The phenomenon results in inhibition of a metabolic pathway by siRNAs in one tissue allowing expression of the flavonoid pathway and synthesis of secondary metabolites in other organs as the chalcone synthase small RNAs are found in the seed coats of yellow seeded soybean varieties but not in the cotyledons of the same genotype.
Project description:Millet is a dangerous weed in Hungary. Lack of seed dormancy helps it to spread easily and be present at maize, wheat and other crop fields. Our previous report revealed the possibility that millet can also play a role as a virus reservoir. In that study we detected the presence of several viruses in millet using DAS ELISA. Because serological methods can only detect the presence of the investigated particular pathogens, we suspected that other, previously unknown viruses can also be present in this weed. To investigate this theory, we randomly sampled two locations and collected millets showing stunting, chlorosis, and striped leaves and investigated the presence of viruses using small RNA HTS as a diagnostic method. Our result confirmed the widespread presence of wheat streak mosaic virus at both locations. Moreover, barley yellow striate mosaic virus and barley virus G were also identified, which have not been described from Hungary before. As these viruses can cause severe diseases on wheat, their presence on a weed mean a potential infection risk. Our study indicates that the presence of millets on the fields needs a special control in order to prevent emergence of new diseases at crop fields.
Project description:Beet necrotic yellow vein virus (BNYVV) and Beet soil-borne mosaic virus (BSBMV) belong to the genus Benyvirus. Both viruses share a similar genome organization, but disease development induced in their major host plant sugar beet displays striking differences. BNYVV induces excessive lateral root (LR) formation by hijacking auxin-regulated pathways; whereas BSBMV infected roots appear asymptomatic. To elucidate transcriptomic changes associated with the virus-specific disease development of BNYVV and BSBMV, we performed a comparative transcriptome analysis of a virus infected susceptible sugar beet genotype.
Project description:Transcript profiling of control vs Mungbean yellow mosaic India virus infected Glycine max variety JS335. RNA samples were collected at 2 dpi to study change in transcript profile at early infection.
Project description:To dissect the gene regulatory networks operating during soybean seed development, we identified the binding sites genome-wide for transcription factor in soybean seeds during seed development using ChIP-seq
Project description:To dissect the gene regulatory networks operating during soybean seed development, we identified the binding sites genome-wide for transcription factor in soybean seeds during seed development using ChIP-seq
Project description:To dissect the gene regulatory networks operating during soybean seed development, we identified the binding sites genome-wide for transcription factor in soybean seeds during seed development using ChIP-seq