Project description:Saccharomyces cerevisiae is an excellent microorganism for industrial succinic acid production, but high succinic acid concentration will inhibit the growth of Saccharomyces cerevisiae then reduce the production of succinic acid. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different genetic backgrounds under different succinic acid stress, we hope to find the response mechanism of Saccharomyces cerevisiae to succinic acid.
Project description:Yeast is a powerful model system for studying the action of small molecule therapeutics. An important limitation has been low efficacy of many small molecules in yeast due to limited intracellular drug accumulation. We used the DNA binding domain of the pleiotropic drug resistance regulator Pdr1 fused in-frame to transcription repressors to repress Pdr1 regulated genes. Expression of these regulators conferred dominant enhancement of drug sensitivity and led to greatly diminished levels of Pdr1p regulated transcripts, including the yeast p-glycoprotein homologue Pdr5. Enhanced sensitivity was seen for a wide range of small molecules. Biochemical measurements demonstrated enhanced accumulation of rhodamine in yeast cells carrying the chimeras. These repressors of Pdr1p regulated transcripts can be introduced into large collections of strains such as the S. cerevisiae deletion set, and enhance the utility of yeast for studying drug action and for mechanism-based drug discovery. Keywords: Comparison of genetic variants
Project description:To characterize cellular response to the anti-cancer ruthinium complex KP1019, budding yeast Saccharomyces cerevisiae transcripitonal response to KP1019 was measured using microarray analysis. Although KP1019 molecular mechanism of action remains a matter of debate, the drug has been shown to bind DNA in biophysical assays and to damage DNA of colorectal and ovarian cancer cells in vitro. KP1019 has also been shown to induce mutations and induce cell cycle arrest in Saccharomyces cerevisiae, suggesting that budding yeast can serve as an appropriate model for characterizing the cellular response to the drug. Here we use a transcriptomic approach to characterize KP1019 induced transcriptional changes.
Project description:A six array study using total gDNA recovered from two separate cultures of each of three different strains of Saccharomyces cerevisiae (YB-210 or CRB, Y389 or MUSH, and Y2209 or LEP) and two separate cultures of Saccharomyces cerevisiae DBY8268. Each array measures the hybridization of probes tiled across the Saccharomyces cerevisiae genome.
Project description:Industrial bioethanol production may involve a low pH environment,improving the tolerance of S. cerevisiae to a low pH environment caused by inorganic acids may be of industrial importance to control bacterial contamination, increase ethanol yield and reduce production cost. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different ploidy under low pH stress, we hope to find the tolerance mechanism of Saccharomyces cerevisiae to low pH.
Project description:Nuclear depletion of the essential transcription termination factor Nrd1 in Saccharomyces cerevisiae was studied using a combination of RNA-Seq, ChIP-Seq of Pol II and PAR-CLIP of Nrd1. The drug rapamycin induces the formation of a ternary complex between a protein of interest, the drug and the small subunit of the ribosome (both proteins are genetically engineered). The small ribosome subunit is transported out of the nucleus. therefore the protein of interest can be depleted from nucleus upon treatment with rapamycin.
Project description:The Pleiotropic Drug Resistance (PDR) network is central to the drug response in fungi, and its overactivation is associated with drug resistance. However, gene regulation of the PDR network is not well understood. Here, we established a method to identify proteins that bind promoter of the PDR5 multidrug transporter gene in Saccharomyces cerevisiae using minichromosome isolation and SILAC-based quantitative proteomics, and identified the SWI/SNF chromatin remodelling complex as a PDR5 promoter-binding complex. We also purified the SWI/SNF complex from S. cerevisiae by immunoprecipitating Flag-tagged Snf6, a subunit of SWI/SNF, and identified the subunits of SWI/SNF and its binding proteins by LC-MS/MS.