Project description:Dravet syndrome (DS) is a devastating early onset refractory epilepsy syndrome caused by variants in the SCN1A gene. A disturbed GABAergic interneuron function is implicated in the progression to DS but the underlying developmental and pathophysiological mechanisms remain elusive, in particularly at the chromatin level. In this study, we utilized induced pluripotent stem cells (iPSCs) derived from DS cases and healthy donors to model disease-associated epigenetic abnormalities of GABAergic development. Employing the ATAC-Seq technique, we assessed chromatin accessibility at multiple time points (Day 0, Day 19, Day 35, and Day 65) of GABAergic differentiation. Additionally, we elucidated the effects of the commonly used anti-seizure drug valproic acid (VPA) on chromatin accessibility in GABAergic cells. The distinct dynamics in chromatin profile of DS iPSC predicted accelerated early GABAergic development, evident at D19, and diverged further from the pattern in control iPSC with continued differentiation, indicating a disrupted GABAergic maturation. Exposure to VPA at D65 reshaped the chromatin landscape at a variable extent in different iPSC-lines and rescued the observed dysfunctional development in some DS iPSC-GABA. This study provides the first comprehensive investigation on the chromatin landscape of GABAergic differentiation in DS-patient iPSC, offering valuable insights into the epigenetic dysregulations associated with interneuronal dysfunction in DS. Moreover, our detailed analysis of the chromatin changes induced by VPA in iPSC-GABA holds the potential to improve development of personalized and targeted anti-epileptic therapies.
Project description:Dravet syndrome is a developmental and epileptic encephalopathy characterized by seizures, behavioral abnormalities, developmental deficits, and elevated risk of sudden unexpected death in epilepsy (SUDEP). Most patient cases are caused by de novo loss-of-function mutations in the gene SCN1A, causing a haploinsufficiency of the alpha subunit of the voltage-gated sodium channel NaV1.1. Within the brain, NaV1.1 is primarily localized to the axons of inhibitory neurons, and decreased NaV1.1 function is hypothesized to reduce GABAergic inhibitory neurotransmission within the brain, driving neuronal network hyperexcitability and subsequent pathology. We have developed a human in vitro model of Dravet syndrome using differentiated neurons derived from patient iPSC and enriched for GABA expressing neurons. Neurons were plated on high definition multielectrode arrays (HD-MEAs), permitting recordings from the same cultures over the 7-weeks duration of study at the network, single cell, and subcellular resolution. Using this capability, we characterized the features of axonal morphology and physiology. Neurons developed increased spiking activity and synchronous network bursting. Recordings were processed through a spike sorting pipeline for curation of single unit activity and to assess the effects of pharmacological treatments. At 7-weeks, the application of the GABAAR receptor agonist muscimol eliminated network bursting, indicating the presence of GABAergic neurotransmission. To identify the role of NaV1.1 on neuronal and network activity, cultures were treated with a dose-response of the NaV1.1 potentiator δ-theraphotoxin-Hm1a. This resulted in a strong increase in firing rates of putative GABAergic neurons, an increase in the intraburst firing rate, and eliminated network bursting. These results validate that potentiation of NaV1.1 in Dravet patient iPSC-derived neurons results in decreased firing synchrony in neuronal networks through increased GABAergic neuron activity and support the use of human neurons and HD-MEAs as viable high-throughput electrophysiological platform to enable therapeutic discovery.
Project description:Neuronal activity-dependent gene expression is essential for healthy brain development. Emerging studies implicate alterations in GABAergic neuronal circuits in neurodevelopmental and psychiatric disorders. We conducted an activity-dependent transcriptional and epigenetic profiling of human iPSC-derived GABAergic neurons.
Project description:Dravet syndrome (DS) is a severe epileptic encephalopathy caused by heterozygous loss-of-function mutations in the SCN1A gene, indicating a haploinsufficient genetic mechanism underlining this pathology. Here, we tested whether dCas9-mediated Scn1a gene activation could rescue Scn1a haploinsufficiency and restore physiological levels of its gene product, the Nav1.1 voltage-gated sodium channel. We screeened sgRNAs for their ability to stimulate Scn1a gene transcription in association with the dCas9 activation system. Interestingly, we identified one single sgRNA able to significantly increase Scn1a gene expression levels in cell lines as well as in primary neurons, with high specificity. Accordingly, levels of Nav1.1 protein were sufficiently augmented to potentiate firing ability of wild-type immature GABAergic interneurons. A similar effect in activating the Scn1a transcription was elicited in Dravet GABAergic interneurons rescuing their dysfunctional properties. To determine whether this approach could have therapeutic effect, we packaged adeno-associated viruses with the Scn1a-dCas9 activation system and showed their ability to ameliorate the febrile epileptic crises in DS mice. Our results pave the way for exploiting the dCas9-based gene activation as an effective and targeted approach to DS and other similar disorders resulting from altered gene dosage.
Project description:The integration of cell metabolism with signalling pathways, transcription factor networks and epigenetic mediators is critical in coordinating molecular and cellular events during embryogenesis. Induced pluripotent stem cells (IPSCs) are an established model for embryogenesis, germ layer specification and cell lineage differentiation, advancing the study of human embryonic development and the translation of innovations in drug discovery, disease modelling and cell-based therapies. The metabolic regulation of IPSC pluripotency is mediated by balancing glycolysis and oxidative phosphorylation, but there is a paucity of data regarding the influence of individual metabolite changes during cell lineage differentiation. We used <sup>1</sup>H NMR metabolite fingerprinting and footprinting to monitor metabolite levels as IPSCs are directed in a three-stage protocol through primitive streak/mesendoderm, mesoderm and chondrogenic populations. Metabolite changes were associated with central metabolism, with aerobic glycolysis predominant in IPSC, elevated oxidative phosphorylation during differentiation and fatty acid oxidation and ketone body use in chondrogenic cells. Metabolites were also implicated in the epigenetic regulation of pluripotency, cell signalling and biosynthetic pathways. Our results show that <sup>1</sup>H NMR metabolomics is an effective tool for monitoring metabolite changes during the differentiation of pluripotent cells with implications on optimising media and environmental parameters for the study of embryogenesis and translational applications.