Project description:The emergence of multidrug resistant tuberculosis and the increasing level of resistance urges the search for alternative drugs in treatment. Several neuroleptics, like thioridazine, reveal activity against Mycobacterium tuberculosis. Thioridazine was even successfully applied in compassionate therapy of extensively drug resistant tuberculosis in patients when added to other second and third line antibiotics. The synergistic effects between thioridazine and other anti-tuberculosis drugs is usually assigned to the inhibition of efflux pumps by thioridazine. Using an unbiased proteomic approach, we set out to unravel the molecular mechanism of this potential new anti-tuberculosis component by examining the impact of continuous thioridazine exposure on the proteome of M. tuberculosis. We discovered that under the influence of thioridazine several proteins involved in the maintenance of the cell wall permeability barrier are differentially regulated, while none of the known mycobacterial efflux pumps was differentially regulated on the protein level. By assessing accumulation of fluorescent dyes in M. tuberculosis over time, we demonstrated that long-term drug exposure of M. tuberculosis indeed affected the mycobacterial cell envelope and increased the permeability towards both hydrophilic and hydrophobic compounds. Furthermore, we demonstrated that treatment of M. tuberculosis with thioridazine altered the composition of the plasma membrane. Thioridazine induced an increase in cell envelope permeability, and thereby the enhanced uptake of compounds, this could explain the previously reported synergistic effects between thioridazine and other anti-tuberculosis drugs. Although the hypothesis of higher intercellular drug concentrations by THZ has not changed in this study, the more exact knowledge on its mode of action is a major step forward. This new insight in the molecular mechanism of this anti-tuberculosis compound could facilitate further development of this class of drugs for application in drug therapy of multidrug resistant tuberculosis. In fact, the efficacy of many existing drugs could be improved significantly.
Project description:The alarming rise of antimicrobial resistance in Mycobacterium tuberculosis coupled with the shortage of new antibiotics has made tuberculosis (TB) control a global health priority. Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit the growth of multi-drug resistant isolates of M. tuberculosis. Repurposing NSAIDs, with known clinical properties and safety records, offers a direct route to clinical trials. Therefore we investigated the novel mechanisms of anti-mycobacterial action of the NSAID, carprofen. Integrative molecular and microbiological approaches revealed that carprofen, a bactericidal drug, inhibited bacterial drug efflux mechanisms. In addition, carprofen restricted mycobacterial biofilm-like growth, highlighting the requirement of efflux-mediated communicative systems for the formation of biofilms. Transcriptome profiling revealed that carprofen likely acts by inhibiting respiration through the disruption of membrane potential, which may explain why spontaneous drug-resistant mutants could not be raised due to the pleiotropic nature of carprofen’s anti-tubercular action. This immunomodulatory drug has the potential to reverse TB antimicrobial resistance by inhibiting drug efflux pumps and biofilm formation, and paves a new chemotherapeutic path for tackling tuberculosis.
Project description:Comparison of gene expression profile of the whiB4 mutant strain of Mycobacterium tuberculosis with the wild type Mycobacterium tuberculosis H37RV Mtb WhiB4 mutant mRNA was compared with the mRNA of wtMtb H37RV under aerobic conditons
Project description:This SuperSeries is composed of the following subset Series: GSE36341: mRNA degradation in Mycobacterium tuberculosis under aerobic conditions GSE36342: mRNA degradation in Mycobacterium smegmatis under aerobic conditions GSE36343: mRNA degradation in Mycobacterium tuberculosis during cold and hypoxic stress GSE36344: mRNA degradation in Mycobacterium tuberculosis with DosR ectopically induced Refer to individual Series
Project description:The identification of multidrug resistant (MDR), extensively and totally drug resistant Mycobacterium tuberculosis (Mtb), in vulnerable sites such as Mumbai, is a grave threat to the control of tuberculosis. The current study aimed at explaining the rapid expression of MDR in Directly Observed Treatment Short Course (DOTS) compliant patients, represents the first study comparing global transcriptional profiles of 3 pairs of clinical Mtb isolates, collected longitudinally at initiation and completion of DOTS. While the isolates were drug susceptible (DS) at onset and MDR at completion of DOTS, they exhibited identical DNA fingerprints at both points of collection. The whole genome transcriptional analysis was performed using total RNA from H37Rv and 3 locally predominant spoligotypes viz. MANU1, CAS and Beijing, hybridized on MTBv3 (BuG@S) microarray, and yielded 36, 98 and 45 differentially expressed genes respectively. Genes encoding transcription factors (sig, rpoB), cell wall biosynthesis (emb genes), protein synthesis (rpl) and additional central metabolic pathways (ppdK, pknH, pfkB) were found to be down regulated in the MDR isolates as compared to the DS isolate of the same genotype. Up regulation of drug efflux pumps, ABC transporters, trans-membrane proteins and stress response transcriptional factors (whiB) in the MDR isolates was observed. The data indicated that Mtb, without specific mutations in drug target genes may persist in the host due to additional mechanisms like drug efflux pumps and lowered rate of metabolism. Furthermore this population of Mtb, which also showed reduced DNA repair activity, would result in selection and stabilization of spontaneous mutations in drug target genes, causing selection of a MDR strain in the presence of drug pressures. Efflux pump such as drrA may play a significant role in increasing fitness of low level drug resistant cells and assist in survival of Mtb till acquisition of drug resistant mutations with least fitness cost. [Data is also available from http://bugs.sgul.ac.uk/E-BUGS-134]
Project description:Transcriptional profiling of Mycobacterium tuberculosis H37Rv strains comparing control DMSO treated strains with Lupulone treated strains. Goal was to determine the effects of Lupulone against Mycobacterium tuberculosis H37Rv strains.
Project description:Transcriptional profiling of Mycobacterium tuberculosis H37Rv strains comparing control DMSO treated strains with Linezolid treated strains. Goal was to determine the effects of Linezolid against Mycobacterium tuberculosis H37Rv strains.
Project description:We analyzed the genes expressed, or the transcriptome, of bacilli (Mycobacterium tuberculosis) growing in fatty acids as sole carbon source. Using new technologies to massively sequence of RNA molecules we identified a group of genes that provides novel insight regarding the metabolic pathways and transcriptional regulation of latent M. Tuberculosis.
Project description:Transcriptional profiling of Mycobacterium tuberculosis H37Ra::pTetR-yidC (Test) compared with Mycobacterium tuberculosis H37Ra::pTetR (Control) bacteria after 4 days of treatment with 50ng/ml ATc with shaking at 200rpm at 37°C.
Project description:This SuperSeries is composed of the following subset Series: GSE6209: The global transcriptional profile of Mycobacterium tuberculosis during human macrophages infection GSE7962: Sigma factor E of Mycobacterium tuberculosis controls the expression of bacterial components that modulate macrophages Keywords: SuperSeries Refer to individual Series