Project description:The ancestral tomato species are known to possess genes that are valuable for improving traits in breeding. Here, we aimed to construct high-quality de novo genome assemblies of Solanum pimpinellifolium 'LA1670' and S. lycopersicum var. cerasiforme 'LA1673', originating from Peru. The Pacific Biosciences (PacBio) long-read sequences with 110× and 104× coverages were assembled and polished to generate 244 and 202 contigs spanning 808.8 Mbp for 'LA1670' and 804.5 Mbp for 'LA1673', respectively. After chromosome-level scaffolding with reference guiding, 14 scaffold sequences corresponding to 12 tomato chromosomes and 2 unassigned sequences were constructed. High-quality genome assemblies were confirmed using the Benchmarking Universal Single-Copy Orthologs and long terminal repeat assembly index. The protein-coding sequences were then predicted, and their transcriptomes were confirmed. The de novo assembled genomes of S. pimpinellifolium and S. lycopersicum var. cerasiforme were predicted to have 71,945 and 75,230 protein-coding genes, including 29,629 and 29,185 non-redundant genes, respectively, as supported by the transcriptome analysis results. The chromosome-level genome assemblies coupled with transcriptome data sets of the two accessions would be valuable for gaining insights into tomato domestication and understanding genome-scale breeding.
Project description:Wide hybridization is a common and efficient breeding strategy for enhancing crop yield and quality. An interesting phenomenon is that the reciprocal hybrids usually show different phenotypes, and its underlying mechanism is not well understood. Here, we reported our comparative analysis of the DNA methylation patterns in Solanum lycopersicum, Solanum pimpinellifolium and their reciprocal hybrids by methylated DNA immunoprecipitation sequencing. The reciprocal hybrids had lower levels of DNA methylation in CpG islands and LTR retroelements when compared with those of their parents. Importantly, remarkable differences in DNA methylation patterns, mainly in introns and CDS regions, were revealed between the reciprocal hybrids. These different methylated regions were mapped to 79 genes, 14 of which were selected for analysis of gene expression levels. While there was an inverse correlation between DNA methylation and gene expression in promoter regions, the relationship was complicated in gene body regions. Further association analysis revealed that there were 15 differentially methylated genes associated with siRNAs, and that the methylation levels of these genes were inversely correlated with respective siRNAs. All these data raised the possibility that the direction of hybridization induced the divergent epigenomes leading to changes in the transcription levels of reciprocal hybrids.
Project description:we found the expression levels of 76 known miRNAs were highly variable between the reciprocal hybrids through the high-throughput sequencing of small RNAs
Project description:In this study, we explored the metabolome and transcriptome of the ripe fruit in nine landrace accessions representing the seven genetic groups and compared them to the mature fruit of the wild progenitor S. pimpinellifolium. The goal is to shed light in understanding the factors responsible for acquiring tomato fruit quality (taste and flavour) at molecular level during the domestication process.
Project description:BACKGROUND:Reciprocal hybrids showing different phenotypes have been well documented in previous studies, and many factors accounting for different phenotypes have been extensively investigated. However, less is known about whether the profiles of small RNAs differ between reciprocal hybrids and how these small RNAs affect gene expression and phenotypes. To better understand this mechanism, the role of small RNAs on phenotypes in reciprocal hybrids was analysed. RESULTS:Reciprocal hybrids between Solanum lycopersicum cv. Micro-Tom and S. pimpinellifolium line WVa700 were generated. Significantly different phenotypes between the reciprocal hybrids were observed, including fruit shape index, single fruit weight and plant height. Then, through the high-throughput sequencing of small RNAs, we found that the expression levels of 76 known miRNAs were highly variable between the reciprocal hybrids. Subsequently, a total of 410 target genes were predicted to correspond with these differentially expressed miRNAs. Furthermore, gene ontology (GO) annotation indicated that those target genes are primarily involved in metabolic processes. Finally, differentially expressed miRNAs, such as miR156f and 171a, and their target genes were analysed by qRT-PCR, and their expression levels were well correlated with the different phenotypes. CONCLUSIONS:This study showed that the profiles of small RNAs differed between the reciprocal hybrids, and differentially expressed genes were also observed based on the different phenotypes. The qRT-PCR results of target genes showed that differentially expressed miRNAs negatively regulated their target genes. Moreover, the expression of target genes was well correlated with the observations of different phenotypes. These findings may aid in elucidating small RNAs contribute significantly to different phenotypes through epigenetic modification during reciprocal crossing.
Project description:we found the expression levels of 76 known miRNAs were highly variable between the reciprocal hybrids through the high-throughput sequencing of small RNAs small RNA sequencing were performed in Solanum lycopersicum, S. pimpinellifolium and their reciprocal hybrids