Project description:The plant vascular system is essential for the enlarged plant stature and successful colonizzation the land by delivering resources throughout the plants and providing mechanical support. Despite several regulators of vascular patterning have been reported, how vascular system mediates stress resistance remain largely unknown. Here we identified a CsIND transcription factor that is specifically expressed in the xylem and phloem tissues in cucumber. Knock down of CsIND by RNAi lead to dwarf plants with enlarged or disorganized vascular systems in all aerial organs. The content of both auxin and jasmonic acid were increased in the CsIND-RNAi lines. Transcriptome profiling by RNA-Seq hints CsIND-regulated gene networks for defense response and vascular development. Biochemical analyses verified that CsIND directly binds to well-known vascular regulators including CsCCR1, CsMYB116, CsYAB5, CsBP and CsAUX, and physically interacts with dorsiventral patterning genes CsKAN2 and CsYAB5. Further, CsIND-RNAi plants displayed significantly enhanced tolerance to nitrogen dificency and resistance to cucumber downy mildew. Therefore, CsIND regulates vascular formation and resistance to biotic and abiotic stresses in cucumber, through the combinarory interactions with well-known vascular regulaors and hormone metabolism and signaling pathways.
Project description:Cucumber (Cucumis sativus L.) is an economically important vegetable crop distributed in over 80 countries. Downy mildew (DM) caused by the obligate oomycete Pseudoperonospora cubensis is especially destructive in cucumber production. So far, few studies on the changes in proteomes during the P. cubensis infection have been performed. Using a newly developed TMT-LC-MS/MS analysis, the proteomes of DM-resistant variety ‘ZJ’ and DM-susceptible variety ‘SDG’ under the P. cubensis infection were investigated. In total, 6400 proteins were identified, 5629 of which were quantified. The differential accumulated proteins (DAPs) exhibited various biological functions and diverse subcellular localizations. KEGG enrichment analysis showed that various metabolic pathways were significantly altered under the P. cubensis infection, such as terpenoid backbone biosynthesis, and selenocompound metabolism in ZJ, and starch and sucrose metabolism in SDG. Most of the enzymes associated with terpenoid backbone synthesis were significantly accumulated in ZJ rather than in SDG, suggesting that pathogen-induced terpenoids accumulation might play an important role in the resistance against P. cubensis infection. Furthermore, a number of pathogenesis-related proteins and heat shock proteins were identified as DAPs, suggesting that DM resistance was controlled by a complex network. Our data allowed us to identify and screen more potential proteins related to the DM resistance.
Project description:We used Arabidopsis full-genome microarrays to characterize plant transcript accumulations in wild-type plants and clv mutants, 3 days after water treatment and inoculation with the biotrophic oomycete downy mildew pathogen, Hyaloperonospora arabidopsidis.
Project description:We used Arabidopsis full-genome microarrays to characterize plant transcript accumulations in map65-3 and ugt76b1 mutants, 3 days after water treatment and inoculation with the biotrophic oomycete downy mildew pathogen, Hyaloperonospora arabidopsidis (Hpa)
Project description:We used Arabidopsis full-genome microarrays to characterize plant transcript accumulations at different stages of infection with the biotrophic oomycete downy mildew pathogen, Hyaloperonospora arabidopsidis : initiation (< 1 dpi) and maintenance of infection (> 4 dpi).
Project description:We used Arabidopsis full-genome microarrays to characterize plant transcript accumulations in wild-type plants and pskr1-5 mutants, 3 days after water treatment and inoculation with the biotrophic oomycete downy mildew pathogen, Hyaloperonospora arabidopsidis.
2012-04-14 | GSE37255 | GEO
Project description:Transcriptome analysis of three cucumber genotypes inoculated with Pseudoperonospora cubensis (cucurbit downy mildew)
Project description:Grapevine downy mildew is an important disease affecting crop production and causing severe losses. To identify genotype-dependent responses towards this pathogen and to explore the molecular mechanisms involved in grapevine-P. viticola resistance, we have conducted a proteomic analysis of leaf samples from resistant and susceptible grapevine genotypes prior and post-inoculation with the pathogen. Proteins were analyzed by quantitative two-dimensional differential gel electrophoresis (2D-DIGE). The analysis able to identified 50 unique proteins. Functional analysis showed that photosynthesis and metabolism were the main categories differentiating genotypes at 0h and that P. viticola-responsive proteins were mainly involved in photosynthesis, carbohydrate metabolism, stress and defense responses and redox homeostasis. ROS production, total antioxidant capacity and lipid peroxidation on both genotypes were determined and together with the proteome data suggest that Regent presents a strict balance between ROS control and signaling leading to plant cell death activation. Our data reveals the genotype-dependent modulation of plant metabolism and defense responses providing new insights into underlying molecular processes of grapevine resistance against the downy mildew fungus.
Project description:Study of gene expression during Plasmopara viticola infection in the resistant Vitis vinifera cultivar 'Regent'. The oomycete fungus Plasmopara viticola (Berk. et Curt.) Berl. et de Toni is responsible for grapevine downy mildew disease. Most of the cultivated grapevines are sensitive to this pathogen, thus requiring intensive fungicide treatments. The molecular basis of resistance to this pathogen is poorly understood. We have carried out a cDNA microarray transcriptome analysis to identify grapevine genes associated with resistance traits. Early transcriptional changes associated with downy mildew infection in the resistant Vitis vinifera cultivar ‘Regent’, when compared to the susceptible cultivar ‘Trincadeira’, were analyzed. Transcript levels were measured at three time-points: 0, 6 and 12 hours post inoculation (hpi). Our data indicate that resistance in V. vinifera ‘Regent’ is induced after infection. This study provides the identification of several candidate genes that may be related to ‘Regent’ defense mechanisms, allowing a better understanding of this cultivar's resistance traits.