Project description:To unravel complex dynamics of environmental disturbance and microbial metabolic activities, we set up laboratory microcosms to investigate the effects of SO42- and O2 alone or in combination on microbial activities and interactions, as well as the resulting fate of carbon within wetland soil. We used proteogenomics to characterize the biochemical and physiological responses of microbial communities to individual perturbations and their combined effects. Stoichiometric models were employed to deconvolute carbon exchanges among the main functional guilds. These findings can contribute to the development of mechanistic models for predicting greenhouse gas emissions from wetland ecosystems under various climate change scenarios.
2024-05-19 | PXD047453 | Pride
Project description:Substrate microbial community diversity
| PRJNA882366 | ENA
Project description:bacterial diversity in different composite substrate
Project description:Anaerobic digestion is a popular and effective microbial process for waste treatment. The performance of anaerobic digestion processes is contingent on the balance of the microbial food web in utilizing various substrates. Recently, co-digestion, i.e., supplementing the primary substrate with an organic-rich co-substrate has been exploited to improve waste treatment efficiency. Yet the potential effects of elevated organic loading on microbial functional gene community remains elusive. In this study, functional gene array (GeoChip 5.0) was used to assess the response of microbial community to the addition of poultry waste in anaerobic digesters treating dairy manure. Consistent with 16S rRNA gene sequences data, GeoChip data showed that microbial community compositions were significantly shifted in favor of copiotrophic populations by co-digestion, as taxa with higher rRNA gene copy number such as Bacilli were enriched. The acetoclastic methanogen Methanosarcina was also enriched, while Methanosaeta was unaltered but more abundant than Methanosarcina throughout the study period. The microbial functional diversity involved in anaerobic digestion were also increased under co-digestion.
Project description:The synthetic microbial community used in this study was composed of the major functional guilds (cellulolytic fermenter, sulfate reducer, hydrogenotrophic methanogen and acetoclastic methanogen) that mediate the anaerobic conversion of cellulosic biomass to CH4 and CO2 in wetland soils. The choice of a facultative sulfate-reducing bacterium (Desulfovibrio vulgaris Hildenborough) introduced metabolic versatility and enabled investigations into the community response to sulfate intrusion. The growth status of these multi-species cultures was measured over a week by daily analysis of substrate consumption and product accumulation. The quad-cultures were analyzed with metaproteomics at the end of experiment to characterize the community structure and metabolic activities.