Project description:Histone modifications mediate between genes and environment in plant growth and developmental events. To characterize the histone modification signatures in strawberry, we performed ChIP-seq experiments for seven histone marks in the immature and mature fruits, and leaves of the woodland strawberry F. vesca ('Ruegen'). The seven histone marks include H3K9/K14ac, H3K27ac, H3K4me1, H3K4me3, H3K36me3, H3K27me3 and H3K9me2. In addition, to reveal the effect of the histone deacetylase FvHDA6, H3K9/K14a was profiled in FvHDA6-OE fruits.
Project description:For exploring whether mRNA m6A modification participates in the regulation of strawberry fruit ripening, we performed m6A-seq in woodland strawberry fruit at three different development stages, including the S6 stage (almost 15 days post-anthsis (DPA)), the RS1 stage (21 DPA), and the RS3 stage (27 DPA), with three biological replicates. mRNA methylome analysis reveals that m6A methylation prevalently distributes in the strawberry transcriptome and highly enrichs in the coding sequence, stop codon and 3’ untranslated region.
Project description:Fragaria vesca, a diploid woodland strawberry with a small and sequenced genome, is an excellent model for studying fruit development. The strawberry fruit is unique in that the edible flesh is actually enlarged receptacle tissue. The true fruit are the numerous dry achenes dotting the receptacleM-^Rs surface. Auxin produced from the achene is essential for the receptacle fruit set, a paradigm for studying crosstalk between hormone signaling and development. To investigate the molecular mechanism underlying strawberry fruit set, next-generation sequencing was employed to profile early-stage fruit development with five fruit tissue types and five developmental stages from floral anthesis to enlarged fruits. This two-dimensional data set provides a systems-level view of molecular events with precise spatial and temporal resolution.
Project description:The history of click-speaking Khoe-San, and African populations in general, remains poorly understood. We genotyped ~2.3 million SNPs in 220 southern Africans and found that the Khoe-San diverged from other populations at least 100,000 years ago, but structure within the Khoe-San dated back to about 35,000 years ago. Genetic variation in various sub-Saharan populations did not localize the origin of modern humans to a single geographic region within Africa, instead, it indicated a history of admixture and stratification. We found evidence of adaptation targeting muscle function and immune response, potential adaptive introgression of UV-light protection, and selection predating modern human diversification involving skeletal and neurological development. These new findings illustrate the importance of African genomic diversity in understanding human evolutionary history .220 samples were analysed with the Illumina HumanOmni2.5-Quad BeadChip and are described herein.