Project description:Intermittent neonatal hypoxia elicits the upregulation of inflammatory-related genes in the adult rat through long-lasting programming effects
Project description:Living organisms are intricate systems with dynamic internal processes. Their RNA, protein, and metabolite levels fluctuate in response to variations in health and environmental conditions. Among these, RNA expression is particularly accessible for comprehensive analysis, thanks to the evolution of high throughput sequencing technologies in recent years. This progress has enabled researchers to identify unique RNA patterns associated with various diseases, as well as to develop predictive and prognostic biomarkers for therapy response. Such cross-sectional studies allow for the identification of differentially expressed genes (DEGs) between groups, but they have limitations. Specifically, they often fail to capture the temporal changes in gene expression following individual perturbations and may lead to significant false discoveries due to inherent noise in RNA sequencing sample preparation and data collection. To address these challenges, our study hypothesized that frequent, longitudinal RNA sequencing (RNAseq) analysis of blood samples could offer a more profound understanding of the temporal dynamics of gene expression in response to drug interventions, while also enhancing the accuracy of identifying genes influenced by these drugs. In this research, we conducted RNAseq on 829 blood samples collected from 84 Sprague-Dawley lab rats. Excluding the control group, each rat was administered one of four different compounds known for liver toxicity: tetracycline, isoniazid, valproate, and carbon tetrachloride. We developed specialized bioinformatics tools to pinpoint genes that exhibit temporal variation in response to these treatments.
Project description:We hypothesize that the culture media collected from macrophages exposed to intermittent hypoxia will induce a greater pro-inflammatory gene profile in naïve cultured macrophages than will culture media collected from macrophages exposed to sustained hypoxia. We will evaluate gene expression using microarray analysis of RNA collected from RAW 264.7 macrophages cultured for 24 hours in DMEM media obtained from 1) cells cultured with intermittent hypoxia (2 minute cycles: 90 seconds at 40 Torr and 30 seconds at 8 Torr), 2) media exposed to intermittent hypoxia, 3) cells cultured with sustained hypoxia (8 Torr), 4) media exposed to sustained hypoxia and 4) standard tissue culture conditions (fresh DMEM media; reference).
Project description:We hypothesize that cultured macrophages directly exposed intermittent hypoxia will have a greater change in expression in genes related to inflammatory response than macrophages exposed to sustained hypoxia. We will evaluate gene expression using microarray analysis of RNA collected from RAW 264.7 macrophages cultured under the following environmental conditions: 1) 4 hours of intermittent hypoxia (2 minute cycles: 90 seconds at 40 Torr and 30 seconds at 8 Torr), 2) 4 hours of sustained hypoxia (8 Torr), and 3 ) standard tissue culture conditions (141 Torr; reference).
Project description:In order to establish a rat embryonic stem cell transcriptome, mRNA from rESC cell line DAc8, the first male germline competent rat ESC line to be described and the first to be used to generate a knockout rat model was characterized using RNA sequencing (RNA-seq) analysis.
Project description:Analysis of hormone effects on irradiated LBNF1 rat testes, which contain only somatic cells except for a few type A spermatgogonia. Rats were treated for 2 weeks with either sham treatment (group X), hormonal ablation (GnRH antagonist and the androgen receptor antagonist flutamide, group XAF), testosterone supplementation (GnRH antagonist and testosterone, group XAT), and FSH supplementation ((GnRH antagonist, androgen receptor antagonist, and FSH, group XAFF). Results provide insight into identifying genes in the somatic testis cells regulated by testosterone, LH, or FSH.