Project description:Transforming growth factor beta 1 (TGF-β1) is the most extensively studied growth factor in dentin-pulp complex, with pleiotropic effects on pulp response and healing. Our main objective was to analyze the expression profile of pulp tissue and odontoblasts, and the effects of TGF-β1 on these profiles in cultured human pulp and odontoblasts with a specific interest in the anti- and pro-inflammatory cytokines. Keywords: Response to TGF-β1 treatment
Project description:Transforming growth factor beta 1 (TGF-β1) is the most extensively studied growth factor in dentin-pulp complex, with pleiotropic effects on pulp response and healing. Our main objective was to analyze the expression profile of pulp tissue and odontoblasts, and the effects of TGF-β1 on these profiles in cultured human pulp and odontoblasts with a specific interest in the anti- and pro-inflammatory cytokines. Experiment Overall Design: Pulp tissues and odontoblasts were cultured for different time periods, and microarray was performed to both cultured and native samples to detect the effects of TGF-β1. Expression of various interleukins (IL) were confirmed by RT-PCR, and in +/- TGF-β1 treated pulps also by antibody array.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.
Project description:We studied miRNAs and their gene targets affecting SARS-CoV-2 pathogenesis in CF airway epithelial cell models in response to TGF-β1. Small RNAseq in CF human bronchial epithelial cell line treated with TGF-β1 and miRNA profiling characterized TGF-β1 effects on the SARS-CoV-2 pathogenesis pathways. Among the effectors, we identified and validated two miRNAs targeting ACE2 mRNA using different CF and non-CF human bronchial epithelial cell models. We have shown that TGF-β1 inhibits ACE2 expression by miR-136-3p and miR-369-5p. ACE2 levels were higher in cells expressing F508del-CFTR, compared to wild-type(WT)-CFTR and TGF-β1 inhibited ACE2 in both cell types. The ACE2 protein levels were still higher in CF, compared to non-CF cells after TGF-β1 treatment. TGF-β1 prevented the functional rescue of F508del-CFTR by ETI in primary human bronchial epithelial cells while ETI did not prevent the TGF-β1 inhibition of ACE2 protein. Finally, TGF-β1 reduced binding of ACE2 to the recombinant monomeric spike RBD. Our results may help to explain, at least in part, the role of TGF-β1 on the SARS-CoV-2 entry via ACE2 in the CF and non-CF airway.
Project description:The etiology of autoimmune hepatitis is poorly understood but likely involves Th1 cells producing IFN-γ. BALB/c background TGF-β1-/- mice rapidly develop fulminant Th1-mediated autoimmune hepatitis. Our aims are to profile liver gene expression in TGF-β1-/- mice, to identify gene expression pathways dependent on IFN-γ as possible targets for rational therapy, and to test potential targets directly in vivo in mice. Keywords: Comparative analysis of gene expression in livers of WT, TGFB1 & IFN knockout mice DNA microarray analyses were applied to liver RNA from TGF-β1-/- mice, TGF-β1-/- /IFN-γ-/- mice, and TGF-β1+/+ littermate controls. 3 mice from each group were analyzed in this study.
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression. Two-condition experiment, Normoxic MSCs vs. Hypoxic MSCs.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.