Project description:Background: Marfan syndrome (MFS) is a heritable connective tissue disorder caused by mutations in the fibrillin-1 gene. This syndrome constitutes a significant identifiable subtype of aortic aneurysmal disease, accounting for over 5% of ascending and thoracic aortic aneurysms. Results: We used spotted membrane DNA macroarrays to identify genes whose altered expression levels may contribute to the phenotype of the disease. Our analysis of 4132 genes identified a subset with significant expression differences between skin fibroblast cultures from unaffected controls versus cultures from affected individuals with known fibrillin-1 mutations. Subsequently, 10 genes were chosen for validation by quantitative RT-PCR. Conclusions: Differential expression of many of the validated genes was associated with MFS samples when an additional group of unaffected and MFS affected subjects were analyzed (p-value < 3 x 10-6 under the null hypothesis that expression levels in cultured fibroblasts are unaffected by MFS status). An unexpected observation was the range of individual gene expression. In unaffected control subjects, expression ranges exceeding 10 fold were seen in many of the genes selected for qRT-PCR validation. The variation in expression in the MFS affected subjects was even greater. Keywords: disease state comparison; Marfan syndrome; cultured skin fibroblasts
Project description:Gene expression profiling of cultured skin fibroblasts obtained from patients affected with classical Ehlers Danlos syndrome (cEDS) Transcriptome-wide expression profiling using the Affymetrix Gene 1.0 ST platform comparing the gene expression pattern of cultured skin fibroblasts from 4 cEDS patients with those of 9 healthy individuals
Project description:Analysis of gene expression profiling of cultured skin fibroblasts obtained from patients affected with vascular Ehlers Danlos syndrome (vEDS) Transcriptome-wide expression profiling using the Affymetrix Gene 1.0 ST platform comparing the gene expression pattern of cultured skin fibroblasts derived from three patients with vEDS with those of nine healthy individuals
Project description:Transcriptional profiling of Homo sapiens inflammatory skin diseases (whole skin biospies): Psoriasis (Pso), vs Atopic Dermatitis (AD) vs Lichen planus (Li), vs Contact Eczema (KE), vs Healthy control (KO) In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation. In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Fibrillins are the major components of microfibrils in the extracellular matrix of elastic and non-elastic tissues. Fibrillin-1 contains one evolutionarily conserved Arg-Gly-Asp (RGD) sequence which mediates cell-matrix interactions through cell-surface integrins. Mutations in close vicinity to the RDG sequence lead to heritable disorders, including Marfan syndrome and stiff skin syndrome. Two recombinant fibrillin-1 fragments were produced, one wild-type RGD-containing fragment and one fragment containing a mutant RGA sequence, which has been previously shown to abolish interactions with integrins. To determine the differential regulation of signaling pathways, microarray analysis of mRNA expression was conducted using Affymetrix Human Gene 2.0 ST chips. The mRNA expression levels were compared after 24 hours of interaction between human skin fibroblasts (HSFs) and the RGD- and RGA-containing fibrillin-1 fragments.
Project description:Myxomatous valve disease is the most common form of heart valve disease leading to morbidity and mortality worldwide. It is primarily associated with inherited connective tissue disorders caused by genetic variants in extracellular matrix genes such as Marfan syndrome. Mice with Fibrillin 1 gene variant Fbn1 C1039G/+ recapitulate histopathological features of Marfan syndrome. However, the cell heterogeneity and changes of gene expression at single cell level in Marfan syndrome valves are completed unknown.