Project description:Primary outcome(s): Overall survival Relationship between treatment outcomes of BRAF inhibitor combination therapy and genomic data on pretreatment ctDNA and RNA analysis
| 2661470 | ecrin-mdr-crc
Project description:Acca gene in water column of the South China Sea
Project description:In order to more accurately discover the cause of drug resistance in tumor treatment, and to provide a new basis for precise treatment.
Therefore, based on the umbrella theory of precision medicine, we carried out this single-center, prospective, and observational study to include patients with liver metastases from colorectal cancer. By combining genome, transcriptome, and proteomic sequencing data, we established a basis for colorectal cancer liver Transfer the multi-omics data of the sample, describe the reason for the resistance of the first-line treatment, and search for new therapeutic targets.
Project description:In Europe, ticks are the most important vectors of diseases threatening humans, livestock, wildlife and companion animals. Nevertheless, genomic sequence information and functional annotation of proteins of the most important European tick, Ixodes ricinus, is limited. Here we present the first analysis of the I. ricinus genome and of the transcriptome of the unfed I. ricinus midgut. We combined and integrated data from genome, transcriptome and proteome. The de novo assembly of 1 billion paired-end sequences identified 6,415 putative genes providing an unprecedented insight into the I. ricinus genome. Mapping of our midgut mRNA reads to the assembled contigs let us estimate to cover around two third of the unique genomic sequences. In addition, more than 10,000 transcripts from naïve midgut were annotated functionally and/or locally. By combining the alignment-based with a motif-search based annotation approach, we could double the number of annotations throughout all groups without shifting the dataset. Moreover, 1,175 proteins expressed in the naïve midgut were identified by mass spectrometry confirming the high completeness of our transcriptome database, and 608 were significantly annotated for function and/or localization. This multiple-omics study vastly extends the publicly available DNA, RNA and protein databases for I. ricinus and ticks in general.
Project description:While recent developments in genomic sequencing technology have enabled comprehensive transcriptome analyses of single cells, single cell proteomics has thus far been restricted to targeted studies. Here, we perform global absolute protein quantification of single Xenopus laevis eggs using mass spectrometry-based proteomics, quantifying over 5800 proteins in the largest single cell proteome characterized to date. Absolute protein amounts in single eggs are highly consistent, thus indicating a tight regulation of global protein abundance. In contrast, comparison between the single-cell proteome and transcriptome reveal poor expression correlation. Finally, we identify 439 proteins that significantly change in abundance during early embryogenesis. Many of these proteins do not show regulation at the transcript level. Altogether, our data reveal that the transcriptome is a poor indicator of the proteome and that protein levels are tightly controlled in Xenopus leavis eggs.
2014-07-23 | PXD000902 | Pride
Project description:Unreferenced genomic transcriptome sequencing raw data from scorpion