Project description:Infestation with white-backed planthopper (WBPH) to rice caused induced resistance to rice pathogens but brown planthopper (BPH) infestation induce weaker resistance to rice pathogens. We compared changes in gene expression in rice plants infested with WBPH and BPH to gain some insight into the WBPH-induced resistance to rice pathogens. An analysis, using microarrays, of gene expression in rice plants infested with these planthoppers revealed that WBPH infestation caused high induction of many defense-related genes including pathogenesis-related (PR) genes than BPH infestation. Furthermore, hydroperoxide lyase 2 (OsHPL2) which is an enzyme to produce C6 volatiles was induced by WBPH infestation, but not by BPH infestation. Keywords: response to herbivory; induced resistance
Project description:Cultivated rice (Oryza sativa L.) is frequently exposed to multiple stresses, including Schizotetranychus oryzae mite infestation. Rice domestication has narrowed the genetic diversity of the species, leading to a wide susceptibility. This work aimed to observe the response of two wild rice species (Oryza barthii and O. glaberrima) and two O. sativa genotypes (cv. Nipponbare and f. spontanea) to S. oryzae infestation. Surprisingly, leaf damage, histochemistry, chlorophyll concentration and fluorescence showed that the wild species present higher level of leaf damage, increased accumulation of H2O2 and lower photosynthetic capacity when compared to O. sativa genotypes under infested conditions. Infestation decreased tiller number, except in Nipponbare. Infestation also caused the death of wild plants during the reproductive stage. While infestation did not affect the weight of 1,000 grains in both O. sativa genotypes, the number of panicles per plant was affected only in f. spontanea, and the percentage of full seeds per panicle and seed length were increased only in Nipponbare. Using proteomic analysis, we identified 195 differentially abundant proteins when comparing susceptible (O. barthii) and tolerant (Nipponbare) genotypes under control and infested conditions. O. barthii has a less abundant antioxidant arsenal and is unable to modulate proteins involved with general metabolism and energy production under infested condition. Nipponbare presents high abundance of detoxification-related proteins, general metabolic processes and energy production, suggesting that, under infested condition, the primary metabolism is maintained more active compared to O. barthii. Also, under infested conditions, Nipponbare presents higher levels of proline and a greater abundance of defense-related proteins, such as osmotin, ricin B-like lectin, and protease inhibitors. These differentially abundant proteins can be used as biotechnological tools in breeding programs aiming increased tolerance to mite infestation.
Project description:The histone 3 lysine 9 acetylation (H3K9ac) is an epigenetic marker widely distributed in plant genome, which could eThe histone 3 lysine 9 acetylation (H3K9ac) is an epigenetic marker widely distributed in plant genome, which could enhance gene transcription involved in stress-responsive gene expression. The physiological and molecular mechanisms underlying plant responses to insects are being increasingly studied, while epigenetic modifications such as histone acetylation and their potential regulation at the genomic level of transcription of hidden genes in plants damaged by insects remain largely unknown. In current study, we provided the genome-wide profiles of H3K9ac in rice (Oryza sativa) infested by fall armyworm (Spodoptera frugiperda, FAW) using chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-seq). RNA-seq data revealed that 3269 and 4609 genes were up-regulated at 3 h and 12 h after infestation with FAW, respectively. ChIP-Seq analysis revealed 1617 and 2617 genes modified by H3K9ac in rice infested with FAW at 3 h and 12 h, respectively, and H3K9ac was mainly enriched in the transcription start sites of genes.
Project description:Infestation with white-backed planthopper (WBPH) to rice caused induced resistance to rice pathogens but brown planthopper (BPH) infestation induce weaker resistance to rice pathogens. We compared changes in gene expression in rice plants infested with WBPH and BPH to gain some insight into the WBPH-induced resistance to rice pathogens. An analysis, using microarrays, of gene expression in rice plants infested with these planthoppers revealed that WBPH infestation caused high induction of many defense-related genes including pathogenesis-related (PR) genes than BPH infestation. Furthermore, hydroperoxide lyase 2 (OsHPL2) which is an enzyme to produce C6 volatiles was induced by WBPH infestation, but not by BPH infestation. Experiment Overall Design: Agilent rice oligo microarray was used to investigate the gene expression profiling in rice plants infested with WBPH or BPH. Total RNA was extracted from pooled leaf blades infested with WBPH or BPH for 24 h and from mock-treated pooled leaf blades. Total RNA (200 ng) was labeled with Cy-3 or Cy-5 using an Agilent low RNA input linear amplification kit. Fluorescently labeled targets were hybridized to Agilent rice oligo microarrays. Hybridization and wash processes were performed according to the manufacturerâ??s instructions, and hybridized microarrays were scanned using an Agilent DNA microarray scanner. Agilent Feature Extraction software was employed for the image analysis and data extraction processes. Fold changes in expression level in each treatment were compared with those of the respective mock-treated controls. In each treatment, the experiment was performed independently three times.
Project description:Transcriptional profiling of MIT knockdown plants. MIT is a mitochondrial Fe transporter essential for rice growth and development. The goal was to determine the effects of MIT on global rice gene expression.
Project description:Fairy rings are zones of stimulated grass growth by the interaction between the fungi and the plant. In the previous research, we reported the identification of the “fairy”, 2-azahypoxanthine (AHX), produced by the fairy ring-forming fungus and the mechanism of its growth-promoting activity using DNA microarray. We discovered AOH, a common metabolite of AHX in plants. We investigate expression profiling of rice seedlings treated with AHX or AOH for the mechanism of their growth-promoting activity.
Project description:To reveal the underlying molecular mechanism of jasmonate inhibits gibberellins signaling in rice, we performed transcriptional profiling of wild type nipponbare and mutant coi1-13 plants on a global scale using the Affymetrix GeneChip Rice Genome Array
Project description:In this study, we used a cross-species network approach to uncover nitrogen (N)-regulated network modules conserved across a model and a crop species. By translating gene network knowledge from the data-rich model Arabidopsis (Arabidopsis thaliana, ecotype Columbia-0) to a crop, rice (Oryza sativa spp. japonica (Nipponbare)), we identified evolutionarily conserved N-regulatory modules as targets for translational studies to improve N use efficiency in transgenic plants.
Project description:The small RNAs presented here were produced as a preliminary exploration of small RNAs in rice, and as such, various tissues and stress conditions were sampled. Small RNAs present in these samples were all mapped to the rice genome TIGR version 5. The total number of distinct mapped sequences are 12879 for Run 1 and 88508 for Run 2. The total number of sequence reads were respectively 70406 and 191682. The datasets contain Oryza sativa var Nipponbar endogenous small RNA sequences in the size range 18 to 34 nt. Plants were grown in a Conviron Environmental Chamber at high light intensity using both high pressure sodium and metal halide lamps for 10.5 hr at 28 degrees C and for 13.5 hr at 26 degrees C in the dark. RNA was extracted from rice tissues at various stages of development and under different abiotic and biotic stresses. The small RNAs presented here were all mapped to the rice genome TIGR version 5. The total number of distinct mapped sequences are 12879 for Run 1 and 88508 for Run 2. The total number of sequence reads were respectively 70406 and 191682.