Project description:We performed an experiment in humans, in which broad spectrum antibiotics were administered to healthy young adults, prior and subsequent to vaccination with the seasonal influenza vaccine. Transcriptional profiling of peripheral blood mononuclear cells was performed prior to the vaccination and as a time course following the vaccine administration.
Project description:We performed an experiment in humans, in which broad spectrum antibiotics were administered to healthy young adults, prior and subsequent to vaccination with the seasonal influenza vaccine. Transcriptional profiling of peripheral blood mononuclear cells was performed prior to the vaccination and as a time course following the vaccine administration.
Project description:To study longitudinal dynamics of IGH BCR repertoires and clonal lineages evolution of memory B-cells, plasmablasts and plasma cells from peripheral blood of healthy donors, which were sampled three times within a year
Project description:Developing B lymphocytes undergo V(D)J recombination to assemble germline V, D, and J gene segments into exons that encode the antigen-binding variable region of immunoglobulin (Ig) heavy (H) and light (L) chains. IgH and IgL chains associate to form the B cell receptor (BCR), which upon antigen binding activates B cells to secrete BCR as an antibody. Each of the huge number of clonally independent B cells expresses a unique set of IgH and IgL variable regions. Ability of V(D)J recombination to generate vast primary B cell repertoires results from combinatorial assortment of large numbers of different V, D, and J segments, coupled with diversification of the junctions between them to generate the complementary determining region 3 (CDR3) for antigen contact. Approaches to evaluate in depth the content of primary antibody repertoires and, ultimately, to study how they are further molded by secondary mutation and affinity maturation processes are of great importance to the B cell development, vaccine, and antibody fields. We now describe an unbiased, sensitive, and readily accessible assay, referred to as HTGTS repertoire sequencing (HTGTS-Rep-seq), to quantify antibody repertoires. HTGTS-Rep-seq quantitatively identifies the vast majority of IgH and IgL V(D)J exons, including their unique CDR3 sequences, from progenitor and mature mouse B lineage cells via the use of specific J primers. HTGTS-Rep-seq also accurately quantifies DJH intermediates and V(D)J exons in either productive or non-productive configurations. HTGTS-Rep-seq should be useful for studies of human samples, including clonal B-cell expansions and also for following antibody affinity maturation processes. We employed high-throughput genome-wide translocation sequencing adapted repertoire sequencing (HTGTS-Rep-seq) to study antibody repertoires. For HTGTS-Rep-seq libraries, we utilize bait coding ends of J segments to identify, in unbiased fashion, mouse IgH DJH repertoires [processed tlx files] along with both productive and non-productive IgH V(D)J repertoires from both pro-B and peripheral B cells [processed xls files of samples 1-18, 21-51]. Similarly, we also identify mouse productive and non-productive Igk repertoires from peripheral B cells [processed xls files of samples 19,20,52-57].
Project description:Seasonal influenza contributes to a substantial disease burden annually, resulting in approximately 10 million hospital visits and 50 thousand deaths in a typical year in the US. 90% of the annual mortality from influenza occurs in people over the age of 65. While influenza vaccination is the best protection against the virus, it is less effective for the elderly. This may be due to differences in the quantity or type of B cells induced by vaccination in older individuals. To investigate this possibility, we leveraged recent development in single-cell technology that allows for simultaneous measurement of both gene expression profile and the B cell receptor (BCR) at single-cell resolution. Pre- and post-vaccination peripheral blood B cells were sorted from three young and three older adults who responded to the inactivated influenza vaccine and were profiled using single-cell RNAseq with paired BCR sequencing. At pre-vaccination, we observed a higher somatic hypermutation frequency and a higher abundance of activated B cells in older adults than in young adults. Following vaccination, young adults mounted a more clonal response than older adults. The response involved a mix of plasmablasts, activated B cells, and resting memory B cells in both age groups. The response in young adults was dominated by expansion in plasmablasts, while the response in older adults also involved activated B cells. We observed a consistent change in gene expression in plasmablasts after vaccination between age groups but not in the activated B cells. These quantitative and qualitative differences in the B cell response may provide insights into the age-related change of influenza vaccination response.
Project description:Seasonal influenza contributes to a substantial disease burden annually, resulting in approximately 10 million hospital visits and 50 thousand deaths in a typical year in the US. 90% of the annual mortality from influenza occurs in people over the age of 65. While influenza vaccination is the best protection against the virus, it is less effective for the elderly. This may be due to differences in the quantity or type of B cells induced by vaccination in older individuals. To investigate this possibility, we leveraged recent development in single-cell technology that allows for simultaneous measurement of both gene expression profile and the B cell receptor (BCR) at single-cell resolution. Pre- and post-vaccination peripheral blood B cells were sorted from three young and three older adults who responded to the inactivated influenza vaccine and were profiled using single-cell RNAseq with paired BCR sequencing. At pre-vaccination, we observed a higher somatic hypermutation frequency and a higher abundance of activated B cells in older adults than in young adults. Following vaccination, young adults mounted a more clonal response than older adults. The response involved a mix of plasmablasts, activated B cells, and resting memory B cells in both age groups. The response in young adults was dominated by expansion in plasmablasts, while the response in older adults also involved activated B cells. We observed a consistent change in gene expression in plasmablasts after vaccination between age groups but not in the activated B cells. These quantitative and qualitative differences in the B cell response may provide insights into the age-related change of influenza vaccination response.
Project description:In this study, we performed a systems-level analysis of immune responses to the trivalent inactivated influenza vaccine adjuvanted with MF-59 in children (15-24 months old) and in young healthy adults. We analyzed transcriptional responses elicited by vaccination in peripheral blood, as well as cellular and antibody responses following primary and booster vaccinations. The pediatric population is a major target of vaccination, yet there is a paucity of studies on the transcriptional response of immunity to vaccination in this special population. In this study, we performed a systems-level analysis of immune responses to the trivalent inactivated influenza vaccine adjuvanted with MF-59 in children (15-24 months old) and in young healthy adults. We analyzed transcriptional responses elicited by vaccination in peripheral blood, as well as cellular and antibody responses following primary and booster vaccinations. Our analysis revealed that primary vaccination induced a persistent transcriptional signature of innate immunity; booster vaccination induced a transcriptional signature of an enhanced memory-like innate response, which was consistent with enhanced activation of myeloid cells assessed by FACS. Furthermore, we identified a transcriptional signature of type 1 IFN response post booster vaccination and at baseline that was correlated with the local reactogenicity to vaccination, and defined an early signature of the hemagglutinin antibody titers. These results highlight an adaptive behavior of the innate immune system in evoking a memory-like response to secondary vaccination and define molecular correlates of reactogenicity and immunogenicity in infants.
Project description:The primary objective is to compare multiplex immune response signatures following two (primary and a boost) vaccinations with the GSK AS03 adjuvanted H5N1 influenza vaccine or the non-adjuvanted form of the H5N1 influenza vaccine at the 3.75 mcg dose and given 21 days apart and identify differences in very early innate immune responses. These immune signatures will also be correlated with the clinical observations especially safety related local and systemic events.
2024-11-05 | GSE112293 | GEO
Project description:BCR repertoire sequencing following 2009 pandemic influenza vaccination
Project description:The 2009 H1N1 influenza pandemic has prompted a significant need for the development of efficient, single-dose, adjuvanted vaccines. Here we investigated the adjuvant potential of CpG oligodeoxynucleotide (ODN) when used with a human seasonal influenza virus vaccine in ferrets. We found that the CpG ODNadjuvanted vaccine effectively increased antibody production and activated type I interferon (IFN) responses compared to vaccine alone. Based on these findings, pegylated IFN- 2b (PEG-IFN) was also evaluated as an adjuvant in comparison to CpG ODN and complete FreundM-bM-^@M-^Ys adjuvant (CFA). Our results showed that all three vaccines with adjuvant added prevented seasonal human A/Brisbane/59/2007 (H1N1) virus replication more effectively than did vaccine alone. Gene expression profiles indicated that, as well as upregulating IFN-stimulated genes (ISGs), CpG ODN enhanced B-cell activation and increased Toll-like receptor 4 (TLR4) and IFN regulatory factor 4 (IRF4) expression, whereas PEG-IFN augmented adaptive immunity by inducing major histocompatibility complex (MHC) transcription and Ras signaling. In contrast, the use of CFA as an adjuvant induced limited ISG expression but increased the transcription of MHC, cell adhesion molecules, and B-cell activation markers. Taken together, our results better characterize the specific molecular pathways leading to adjuvant activity in different adjuvant-mediated influenza virus vaccinations. In this experiment, 3 ferrets in each group immunizied with different adjuvanted human seasonal vaccines of CFA plus vaccine, CpG plus vaccine, pegylated IFN-alpha plus vaccine and vaccine alone (PBS plus vaccine) and 4 ferrets from control group (PBS only) were anesthetized at day 1 post vaccination. The whole blodd was collected for RNA extraction and purification on the scheduled date. The subsequent gene expression analysis was performed with Affymetrix GeneChip Canine Genome 2.0 Array.