Project description:Placental gene expression in pregnancies established after the transfer of day 7 blastocysts derived from in vitro (IVP), somatic cell nuclear transfer (SCNT) and in vivo (AI) embryos
Project description:MeDIP-chip from livers of cloned and not cloned cattle at two stages (perinatal period, adulthood), using anti-methylcytosine antibody.
| PRJNA296015 | ENA
Project description:Cattle embryo production using Somatic Cell Nuclear Transfer
Project description:Massive dysregulation of genes involved in cell signaling and placental development in cloned cattle conceptus and maternal endometrium
Project description:Trichostatin A does not correct specific errors of somatic cell nuclear transfer on the transcriptomic level highlighing the non-random nature of oocyte-mediated reprogramming errors.
Project description:Cloning mammals by somatic cell nuclear transfer (SCNT) is highly inefficient because of aberrant genomic reprogramming. In addition to random reprogramming errors, we hypothesized the presence of specific errors as evidenced by common anomalies among clones. We found that Xist, which normally inactivates one of the two X chromosomes in females, was ectopically expressed from the active X (Xa) chromosome in cloned mouse embryos of both sexes. Deletion of Xist on Xa normalized global gene expression and produced about a 10-fold increase in cloning efficiency. We also identified an Xist-independent mechanism that specifically downregulated a subset of X-linked genes through somatic-type repressive histone blocks. Thus, we have identified nonrandom reprogramming errors in mouse cloning, which provide promising targets for breakthroughs in SCNT cloning technology. Gene expression were measured in mouse in vitro fertilized and somatic cell cloned blastocysts. More than three biological replicates were performed in each group using defferent nuclear donor cells.
Project description:We hypothesized that the relative abundances of host cell transcripts in lymph nodes of animals with malignant catarrhal fever (MCF), compared to healthy controls, may be used to identify pathways that may help to explain the pathogenesis of MCF. Therefore, an abundance of host cell gene expression patterns in lymph nodes of animals with MCF and healthy controls were analyzed by microarray. Indeed, a vast number of genes related to inflammatory processes, lymphocyte activation, cell proliferation and apoptosis were detected at different abundances. However, the IL-2 transcript was eminent among the transcripts, which were, compared to healthy controls, less abundant in animals with MCF. Compared to healthy cattle, bovines with MCF appear to mimic an IL-2 knockout phenotype that has been described in mice. This supports the hypothesis that immunopathogenic events are linked to the pathogenesis of MCF. IL-2-deficiency may play an important role in the process. Keywords: disease state analysis