Project description:Cotton (Gossypium hirsutum L) is an important crop world wide that provides fiber for the textile industry. Cotton is a perennial plant that stores starch in stems and roots to provide carbohydrates for growth in subsequent seasons. These reserves are not available to produce seed and fiber when cotton is usually grown as an annual crop. Analysis of developing cotton plants indicated that starch levels peaked about the time of first anthesis then began to decline. An earlier peak of levels of starch was occasionally observed and in some greenhouse-grown samples starch increased 2 week after first bloom. Microarray analyses compared gene expression in tissues containing low levels of starch with tissues rapidly accumulating starch. Statistical analysis of differentially expressed genes indicated increased expression among genes associated with carbohydrate metabolism, transcription activity and the proteasome. Genes associated with starch synthesis, starch degradation, sucrose metabolism, hexose metabolism, raffinose synthesis and trehalose synthesis increased in expression in starch accumulating tissues. The anticipated changes in these sugars were largely confirmed by measuring soluble sugars in relevant tissues. We propose that altering expressions of genes and pathways identified in this work could be used to more efficiently mobilize stored carbohydrate to fiber production. Keywords: starch accumulating, stem, root Genes expression was compared between cotton stems that were low in starch and accumulating starch. Gene expression was also compared between cotton roots that were low in starch and accumulating starch. A total of three microarrays were used. One dye swap was used. Material from the field were harvested 2 weeks apart. Greenhouse grown material were planted at two week intervals and harvested at the same time. NOTE that the channel representing the low starch material only gave about half of the total signal than the high starch samples. QPCR of 9 genes confirmed differential expression of 8 of them. QPCR also confirmed similar expression of two genes not predicted to be differentially expressed by the microarray analysis. Therefore no correction was made for the apparent difference in the hybridization of high and low starch samples.
Project description:Cotton (Gossypium hirsutum L) is an important crop world wide that provides fiber for the textile industry. Cotton is a perennial plant that stores starch in stems and roots to provide carbohydrates for growth in subsequent seasons. These reserves are not available to produce seed and fiber when cotton is usually grown as an annual crop. Analysis of developing cotton plants indicated that starch levels peaked about the time of first anthesis then began to decline. An earlier peak of levels of starch was occasionally observed and in some greenhouse-grown samples starch increased 2 week after first bloom. Microarray analyses compared gene expression in tissues containing low levels of starch with tissues rapidly accumulating starch. Statistical analysis of differentially expressed genes indicated increased expression among genes associated with carbohydrate metabolism, transcription activity and the proteasome. Genes associated with starch synthesis, starch degradation, sucrose metabolism, hexose metabolism, raffinose synthesis and trehalose synthesis increased in expression in starch accumulating tissues. The anticipated changes in these sugars were largely confirmed by measuring soluble sugars in relevant tissues. We propose that altering expressions of genes and pathways identified in this work could be used to more efficiently mobilize stored carbohydrate to fiber production. Keywords: starch accumulating, stem, root
Project description:For environmental safety, the high concentration of heavy metals in the soil should be removed. Cadmium (Cd), one of the heavy metals polluting the soil while its concentration exceeds 3.4 mg/kg in soil. Potential use of cotton for remediating heavy Cd-polluted soils is available while its molecular mechanisms of Cd tolerance remains unclear in cotton. In this study, transcriptome analysis was used to identify the Cd tolerance genes and their potential mechanism in cotton. Finally 4,627 differentially expressed genes (DEGs) in the root, 3,022 DEGs in the stem and 3,854 DEGs in leaves were identified through RNA-Seq analysis, respectively. These genes contained heavy metal transporter genes (ABC, CDF, HMA, etc.), annexin genes, heat shock genes (HSP) amongst others. Gene ontology (GO) analysis showed that the DEGs were mainly involved in the oxidation-reduction process and metal ion binding. The DEGs mainly enriched in two pathways, the influenza A and the pyruvate pathway. GhHMAD5 protein, containing a heavy-metal domain, was identified in the pathway to transport or to detoxify the heavy ion. GhHMAD5-overexpressed plants of Arabidopsis thaliana showed the longer roots compared with the control. Meanwhile, GhHMAD5-silenced cotton plants showed more sensitive to Cd stress compared with the control. The results indicated that GhHMAD5 gene is remarkably involved in Cd tolerance, which gives us a preliminary understanding of Cd tolerance mechanisms in upland cotton. Overall, this study provides valuable information for the use of cotton to remediate the soil polluted with heavy metals.
Project description:This study was initiated with the objective of identifying the anther/tapetum specific promoters from cotton floral buds. Cotton is an important commercial crop. Hybrid cotton varieties are developed to obtain improved yield and fiber quality. Most of the hybrid seed production in cotton is carried out by hand emasculation, which requires large amount of manpower, resulting in high cost of hybrid seed. We are developing barnase-barstar based male sterility system, which would be a better alternative for hybrid development. The tapetum specific promoters are main requirement for such a system. The study was thus carried out to identify genes expressed in the anthers.
Project description:Transcriptome analysis in cotton under drought stress. To study the molecular response of drought stress in cotton under field condition global gene expression analysis was carried out in leaf tissue. Gossypium hirsutum cv. Bikaneri Nerma was used for the gene expression analysis. Cotton plants were subjected to drought stress at peak flowering stage. Leaf samples were collected when the soil moisture content was 19.5% which is 50% of the normal control plots. Gene expression profiles in drought induced and their respective control samples were analyzed using Affymertix cotton Genechip Genome arrays to study the global changes in the expression of genome.
Project description:Transcriptome analysis in cotton during fibre development stages. To study the molecular response of drought stress in cotton under field condition global gene expression analysis was carried out at fibre development stages (0, 5, 10 and 20 dpa/Days post anthesis). Gossypium hirsutum cv. Bikaneri Nerma was used for the gene expression analysis. Cotton plants were subjected to drought stress at peak flowering stage. Samples were collected when the soil moisture content was 19.5% which is 50% of the normal control plots. Gene expression profiles in drought induced and their respective control samples were analyzed using Affymertix cotton Genechip Genome arrays to study the global changes in the expression of genome.
Project description:As an initial step to explore the cotton (Gossypium hirsutum L.) root transcriptional response to the southern Root-Knot Nematode (RKN) Meloidogyne incognita infestation, conventional heirloom G. hirsutum (Gh) cultivars [susceptible Acala SJ-2 (SJ2), moderately resistant Upland Wild Mexico Jack Jones (WMJJ), and resistant Acala NemX] that have been shown to be useful as an informative genetic model for detecting and introgressing RKN resistance genes into commercial Upland cotton were used to enlighten the molecular mechanisms and gene expression of RKN resistance. Using the next generation sequencing (NGS) Illumina MiSeq and HiSeq, we performed RNA-seq profiling in roots with disease progression of 10 days and collected from 23 days old plants of SJ2, WMJJ, and NemX. With three biological replicates of each treatment from each cultivar, plants were subjected to RKN-infestation and non-infested control developing a total of 18 RNA-seq libraries
Project description:Cotton fiber were used for the expression analysis at different developmental stages Affymetrix Cotton Genome array were used for the global profiling of gene expression of cotton fiber at different developmental stages