Project description:To identifiy stage-dependent genes in Sertoli cells, we performed expression microarray analysis of the adult whole testes, cultured primary Sertoli cells, Sertoli cells directly isolated from wild-type and Nanos3 (germ-less) testes,seminiferous tubules at stages I-III, IV-VI, VII-VIII and IX-XII. Next to examine the relationship between stage-dependent gene expression change and retinoic acid signaling, we performed expression microarray analysis of the cultured primary Sertoli cells treated with retinoic acid and stage-specific seminiferous tubules injected with lentivirus containing Venus or dominat negative form of RARa, a dominant receptor for retinoic acid in Sertoli cells. Biological duplicates were examined at each sample
Project description:To identifiy stage-dependent genes in Sertoli cells, we performed expression microarray analysis of the adult whole testes, cultured primary Sertoli cells, Sertoli cells directly isolated from wild-type and Nanos3 (germ-less) testes,seminiferous tubules at stages I-III, IV-VI, VII-VIII and IX-XII. Next to examine the relationship between stage-dependent gene expression change and retinoic acid signaling, we performed expression microarray analysis of the cultured primary Sertoli cells treated with retinoic acid and stage-specific seminiferous tubules injected with lentivirus containing Venus or dominat negative form of RARa, a dominant receptor for retinoic acid in Sertoli cells.
Project description:Spermatogenesis requires the presence of functional somatic Sertoli cells in the seminiferous tubules of the testis. Sertoli cells provide support and factors necessary for the successful progression of germ cells into spermatozoa. Sertoli cells are regulated to a large degree by the glycoprotein hormone FSH, which is required for the testis to acquire full size and spermatogenic capacity. Signaling events initiated by the binding of FSH to its receptor lead to an alteration of Sertoli cell gene expression. To characterize the changes in gene expression in FSH-treated Sertoli cells, we used the mRNA from these cells to screen Affymetrix U34A rat GeneChip oligonucleotide microarrays. Sertoli cells from 20-d-old rats were cultured in the presence of 25 ng/ml ovine FSH. At 0, 2, 4, 8, and 24 h after the addition of FSH, total RNA was purified and used to prepare biotinylated target, which was hybridized to the U34A rat microarray containing approximately 9000 rat genes. Analysis identified 100-300 transcripts at each time point that were up-regulated or down-regulated by 2-fold or greater. Genes previously reported to be FSH or cAMP regulated in rat Sertoli cells were identified, in addition to numerous genes not reported to be expressed or FSH regulated in Sertoli cells. The expression patterns of five of these genes, encoding nerve growth factor inducible gene B, PRL-1, PC3 nerve growth factor-inducible antiproliferative putative secreted protein, diacylglycerol acyltransferase, and an expressed sequence tag, in FSH- and N,O'-dibutyryl cAMP-treated rat Sertoli cells were confirmed and characterized by Northern blot analysis. Thus, we have begun to define the transcriptome induced and repressed by FSH in rat Sertoli cells, and we have generated datasets of genes available for further analysis in regard to spermatogenesis and Sertoli cell signaling.
Project description:Mammalian spermatogenesis is a complex biological process that occurs within a highly organized tissue, the seminiferous epithelium. The coordinated maturation of spermatogonia, spermatocytes and spermatids suggests the existence of precise programs of gene expression in these cells as well as in their neighboring somatic Sertoli cells. The objective of this study was to elucidate genes encoding the proteins that execute these programs. Rat seminiferous tubules at stages I, II-III, IV-V, VI, VIIa,b, VIIc,d, VIII, IX-XI, XII, XIII-XIV of the cycle were isolated by microdissection and Sertoli cells, spermatogonia plus early spermatocytes, pachytene spermatocytes and spermatids were purified from enzymatically-dispersed testes. Microarray analysis using Rat Genome 230 2.0 arrays identified a total of 16,971 probe sets that recognized transcripts. A comparison with the transcriptome of other tissues identified 398 testis-specific probe sets, which therefore are potential targets for the development of new contraceptives. Sequential waves of cell and stage-specific gene expression are associated with progression of germ cells through the stages of the cycle of the seminiferous epithelium and 1612 probe sets recognized transcripts whose expressions varied at least 4-fold across the stages of the cycle. Pathway analyses reveal that entire biological processes are regulated cyclically in testicular cells. Important among these are cell cycle and DNA repair. Thus, stage-specific gene expression is a widespread and fundamental characteristic of spermatogenic cells and Sertoli cells. Experiment Overall Design: Seminiferous tubules at the following stages or groups of stages were isolated by transillumination-assisted microdissection: I, II-III, IV-V, VI, VIIa,b, VIIc,d, VIII, IX-XI, XII, XIII-XIV. Twenty-five segments of tubules, 2 m in length, were collected at each stage or group of stages from each rat. Tubules from two separate animals were pooled to form one sample from each stage or groups of stages. A total of 5 independent samples per stage or groups of stages were analyzed. Mature Sertoli cells were isolated to about 85% purity (n=4). Three groups of germ cells were isolated by centrifugal elutriation from enzyme-dispersed testes: round spermatids (n=4), pachytene spermatocytes (n=4) and spermatogonia plus early spermatocytes (n=3) . Purity of these cells has been shown to vary between 85% to 95%
Project description:Studies on the epigenetic regulation of gene expression during germ cell development are still at the beginning stage. In the present study, we used our highly specific 5hmC-labeling and enrichment technique coupled with DNA deep-sequencing to profile the global 5hmC distribution in 8 serial stages of male germ cells during spermatogenesis, as well as in the the Sertoli cells (SE) which are the only somatic cell type inside seminiferous tubules. We analyzed the genomic distribution and dynamic changes of 5hmC during spermatogenesis. Moreover, to dissect the functional significance of 5hmC modifications for transcriptional regulation of gene expression, we also performed RNA-Seq transcriptome analysis in all of the 8 corresponding stages of male germ cells and found that 5hmC is positively correlated with gene expression. RNA-seq: Examination of the transcriptomes during mouse spermatogenesis. 5hmC-seq: Identification of 5hmC enriched genmoic regions in mouse germ cell.
Project description:Studies on the epigenetic regulation of gene expression during germ cell development are still at the beginning stage. In the present study, we used our highly specific 5hmC-labeling and enrichment technique coupled with DNA deep-sequencing to profile the global 5hmC distribution in 8 serial stages of male germ cells during spermatogenesis, as well as in the the Sertoli cells (SE) which are the only somatic cell type inside seminiferous tubules. We analyzed the genomic distribution and dynamic changes of 5hmC during spermatogenesis. Moreover, to dissect the functional significance of 5hmC modifications for transcriptional regulation of gene expression, we also performed RNA-Seq transcriptome analysis in all of the 8 corresponding stages of male germ cells and found that 5hmC is positively correlated with gene expression.
Project description:Sertoli cells, omnipresent, somatic cells within the seminiferous tubules of the mammalian testis are essential to male fertility. Sertoli cells maintain the integrity of the testicular microenvironment, regulate hormone synthesis, and of particular importance, synthesize the active derivative of vitamin A, all trans retinoic acid (atRA), which is required for germ cell differentiation and the commitment of male germ cells to meiosis. Stages VII-IX, when atRA synthesis occurs in the testis, coincides with multiple germ cell development and testicular restructuring events that rely on Sertoli cell gene products to proceed normally. In this study, we have synchronized and captured the mouse testis at four recurrent points of atRA synthesis to observe transcriptomic changes within Sertoli cells as mice age and the Sertoli cells are exposed to increasingly developed germ cell subtypes. This work provides comprehensive, high-resolution characterization of when known, functional Sertoli cell genes are induced across the first wave of spermatogenesis, and outlines in silico predictions of germ cell derived signaling mechanisms targeting Sertoli cells.
Project description:Spermatogonial stem cells are the foundation of spermatogenesis and as such can serve as a tool for the treatment of infertility in prepubertal cancer survivors. Spermatogonial stem cells are unique as they develop from primordial germ cells (PGCs), which colonize the developing tubules as immature SSC precursors. It has been controversial, when SSCs are maturing to an adult-like stem cell and recent research has found that prepubertal SSCs are actually metabolically distinct from adult SSCs until puberty. Sertoli cells picture a major part of the SSC niche and undergo drastic changes with puberty and polarize to compartmentalize the seminiferous epithelium with formation of tight junctions to a tight basal part where SSCs reside and an apical part with more differentiated stages of spermatogenesis. In the study were mapping the progression of Sertoli cells maturation events to the metabolic changes SSCs undergo during prepubertal development.
Project description:This is a study to explore the transcriptional changes after Adjudin treatment in adult rat testes at three time points (control, 8 hour and 4 day). Adjudin, [1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide], is a potential male contraceptive that targets the Sertoli-germ cell interface and causes germ cell depletion from the seminiferous epithelium. Adjudin has been proved to be a useful model to study the mechanisms that regulate junction restructuring in the testis. Experiment Overall Design: Sprague-Dawley rats treated with a single dose of Adjudin at 50 mg/kg b.w. by gavage and terminated after 8 hours (n=2) and 4 days (n=3). Testes from Adjudin-treated rats and untreated (control, n=3) rats were harvested and total RNA were prepared. Standard Affymetrix genechip procedures were followed for the subsequent experiments. Data were analysed in MAS 5.0 and GeneSpring 7.2.
Project description:Sry is sufficient to induce testis formation and subsequent male development of internal and external genitalia in chromosomally female mice and humans. In XX sex-reversed males such as XX/Sry-transgenic (XX/Sry) mice, however, testicular germ cells always disappear soon after birth due to germ cell autonomous defects. Therefore, it remains unclear whether or not Sry alone is sufficient to induce a fully functional testicular soma capable of supporting complete spermatogenesis in the XX body. Here we demonstrated that the testicular somatic environment of XX/Sry males is defective in the later phases of spermatogenesis. Spermatogonial transplantation analyses using XX/Sry male mice revealed that donor XY spermatogonia are capable of proliferating, entering meiosis and differentiating into the round spermatid stage. XY donor-derived round spermatids, however, were frequently detached from the XX/Sry seminiferous epithelia and underwent cell death, thereby preventing further progress beyond the elongated spermatid stage. In contrast, immature XY seminiferous tubule segments transplanted under XX/Sry testis capsules clearly displayed proper differentiation into elongated spermatids in the transplanted XY donor tubules. Microarray analysis of seminiferous tubules isolated from XX/Sry testes confirmed missing expression of several Y-linked genes and alterations in the expression profile of genes associated with spermatogenesis. Therefore, our findings indicate dysfunction of the somatic tubule components, probably Sertoli cells, of XX/Sry testes, supporting our hypothesis that Sry alone is insufficient to induce a fully functional Sertoli cell in XX mice. Experiment Overall Design: Whole testes and seminiferous tubules of XX/Sry and W/Wv males were used for microarray expression analysis using the Affymetrix GeneChip system (Affymetrix, CA). In order to isolate the seminiferous tubules, the tunica was carefully removed from the testes which were then incubated in the medium with 5 mg/ml collagnease at 37oC for 40 min. The remaining seminiferous tubules were washed several times with PBS using a 70-ºm cell strainer to remove interstitial cells. After total RNA was extracted using a RNeasy Mini Kit (Qiagen, Germantown, MD), double-stranded cDNA and biotin-labeled cRNA were synthesized using One-Cycle cDNA Synthesis and IVT Labeling kits (Affymetrix, CA), respectively. Twenty micrograms of fragmented biotin-labeled cRNA was hybridized to the Affymetrix Mouse Expression Array MOE 430A for 16 hr at 45oC. The chips were washed, stained, and then scanned with the GeneArray Scanner (Hewlett Packard, CA) in accordance with the manufacturer's standard protocols. Finally, the microarray data were analyzed using Microarray Suite ver. 5.0 (Affymetrix). Differential expression was defined as a difference of 2-fold or more in both whole testis and seminiferous tubule samples between two recipient males. Mouse 430A Affymetrix Genome Array IDs were used to query the NetAffx data mining tool for gene annotations.