Project description:We have conducted a genome-wide analysis of spontaneous copy number variation (CNV) in the laboratory mouse. We used high resolution microarrays to identify 38 CNVs between 14 colonies of the C57BL/6 strain spanning ~967 generations of inbreeding, and examined these loci in 12 additional strains. It is clear from our results that many CNVs arise through a highly non-random process: 18 of 38 were the product of recurrent mutation, and rates of change vary roughly four orders of magnitude across different loci. These recurrent CNVs are distributed throughout the genome, affect 43 genes, and fluctuate in copy number over mere hundreds of generations, observations that raise questions about their contribution to natural variation. Keywords: Representational oligonucleotide microarray analysis, comparative genomic hybridization, DNA copy number variation, structural variation, inbred mice, spontaneous mutation rate
Project description:We have conducted a genome-wide analysis of spontaneous copy number variation (CNV) in the laboratory mouse. We used high resolution microarrays to identify 38 CNVs between 14 colonies of the C57BL/6 strain spanning ~967 generations of inbreeding, and examined these loci in 12 additional strains. It is clear from our results that many CNVs arise through a highly non-random process: 18 of 38 were the product of recurrent mutation, and rates of change vary roughly four orders of magnitude across different loci. These recurrent CNVs are distributed throughout the genome, affect 43 genes, and fluctuate in copy number over mere hundreds of generations, observations that raise questions about their contribution to natural variation. Keywords: comparative genomic hybridization, DNA copy number variation, structural variation, inbred mice, spontaneous mutation rate
Project description:The extent to which differences in germ line DNA copy number contribute to natural phenotypic variation is unknown. We analyzed the copy number content of the mouse genome to a sub-10 kb resolution. We identified over 1,300 copy number variant regions (CNVRs), most of which are < 10 kb in length, are found in more than one strain, and, in total, span 3.2% (85 Mb) of the genome. To assess the potential functional impact of copy number variation, we mapped expression profiles of purified hematopoietic stem and progenitor cells, adipose tissue and hypothalamus to CNVRs in cis. Of the more than 600 significant associations between CNVRs and expression profiles, most map to CNVRs outside of the transcribed regions of genes. In hematopoietic stem/progenitor cells, up to 28% of strain-dependent expression variation is associated with copy number variation, supporting the role of germ line CNVs as major contributors to natural phenotypic variation in the laboratory mouse.