Project description:The uploaded results of two samples were SNParray results in our research of which fetal CNVs were detected by noninvasive prenatal test (NIPT) and confirmed by microarray results. Sample ZNY162 received prenatal diagnosis because at 17 gestational week the pregnant woman received NIPT showing 23Mb microdeletion in Chr18. Later ultrasound examination showed developmental anomalies of feet and the 13th ribs. The pregnant woman received amniocentesis and SNParray at the 21st gestational week, which confirmed the existence of the microdeletion in Chr18. DNA was extracted from 10ml amniotic fluid and tested by Affymetrix CytoScan HD array to detect CNVs in whole genome, showing arr 18q22.3q23(69,461,933-78,014,123) Ã1. Sample LMQ155 received prenatal diagnosis because of advanced maternal age and NIPT result of a 2.29Mb microduplication in Chr13 at 15 gestational week. Amniocentesis was performed at the 17th gestational week. Affymetrix CytoScan HD array were used to detect fetal CNVs in whole genome, which showed arr 13q21.2(60,399,612-61,730,194) Ã3 that was consistent with NIPT result.
Project description:Amniotic fluid was colelcted during midtrimester from 30 women and at term gestation from 68 women. Cell free RNA was profiled by HTA 2.0 arrays to study the effect of gestational age and other relevant convariates on gene expression and splicing during normal pregnancy.
Project description:Intra-amniotic infection, the invasion of microbes into the amniotic cavity resulting in an inflammatory process, is a clinical condition that can lead to adverse pregnancy outcomes for the mother and fetus as well as severe long-term neonatal morbidities. Despite much research focused on the consequences of intra-amniotic infection, there is still little knowledge about the functional roles of innate immune cells that respond to invading microbes. In the current study, we performed RNA sequencing of sorted neutrophils and monocytes/macrophages from amniotic fluid from women with intra-amniotic infection to determine the transcriptomic differences between these innate immune cells. Further, we sought to identify specific transcriptomic pathways that were significantly altered by the maternal or fetal origin of amniotic fluid neutrophils and monocytes, the presence of a severe fetal inflammatory response, and pregnancy outcome (i.e. preterm or term delivery). We showed that significant transcriptomic differences exist between amniotic fluid neutrophils and monocytes/macrophages from women with intra-amniotic infection that are indicative of the distinct roles these cells play. We also found that amniotic fluid monocytes/macrophages of fetal origin display impaired ability to clear out microbes invading the amniotic cavity compared to those of maternal origin. Notably, we demonstrate that the transcriptomic changes in amniotic fluid monocytes/macrophages are heavily associated with the severity of the fetal inflammatory response, suggesting that the trafficking of fetal neutrophils throughout the umbilical cord is partially modulated by monocytes/macrophages in the amniotic cavity. Finally, we show that amniotic fluid neutrophils and monocytes/macrophages from preterm deliveries display enhanced transcriptomic activity compared to those from term deliveries, highlighting the protective role of these innate immune cells in this vulnerable period. Collectively, these findings demonstrate the underlying complexity of local innate immune responses in women with intra-amniotic infection, and provide new insights into the functions of amniotic fluid neutrophils and monocytes in the amniotic cavity.
Project description:Fecal and amniotic fluid samples were collected from 25 pregnant women undergoing elective Caesarean section delivery after a term pregnancy at Oulu University Hospital, Oulu, Finland. Extracellular vesicles (EVs) were isolated from both sample types and their protein cargo analyzed using LC-ESI-MS/MS.
Project description:The amniotic fluid (AF) cell-free (cf) RNA was shown to reflect physiological and pathological processes in pregnancy, but its value in prediction of spontaneous preterm delivery is unknown. Here we profiled cfRNA in AF samples collected from women who underwent transabdominal amniocentesis after an episode of spontaneous preterm labor and subsequently delivered within 24h (n=10) or later (n=28) in gestation. Expression of known placental single cell (sc) RNA-Seq signatures were quantified in AF cfRNA and compared between groups. Random forest models were applied to predict time to delivery after amniocentesis. There were 2385 genes differentially expressed in AF samples of women who delivered within 24 hours of amniocentesis compared to gestational age-matched samples from women who delivered after 24 hours of amniocentesis.Genes with cfRNA changes were associated with immune and inflammatory processes related to the onset of labor, and expression of placental scRNA-Seq signatures of immune cells were increased with imminent delivery. AF transcriptomic prediction models captured these effects and predicted delivery within 24 hours of amniocentesis (AUROC =0.81). These results may inform development of biomarkers for spontaneous preterm birth.
Project description:To identify candidate miRNAs in amniotic fluids as biomarkers for chorioamnionitis, we compared miRNA array data in amniotic fluids between pregnant women with the absence and presence of histological chorioamnionitis.
Project description:Objective: Amniotic fluid (AF) is a proximal fluid to the fetus containing higher amounts of cell-free fetal RNA/DNA than maternal serum, thereby making it a promising source for novel biomarker discovery of fetal development and maturation. Our aim was to compare AF transcriptomic profiles at different time points in pregnancy to demonstrate unique genetic signatures that would serve as potential biomarkers indicative of fetal maturation. Methods: We isolated AF RNA from 16 women at different time points in pregnancy: 4 from 18-24 weeks, 6 from 34-36 weeks, and 6 from at 39-40 weeks. RNA-sequencing was performed on cell-free RNA. Gene expression and splicing analyses were performed in conjunction with cell-type and pathway inference. Results: Sample-level analysis at different time points in pregnancy yielded a strong correlation with cell types found in the intrauterine environment and fetal respiratory, digestive and external barrier tissues of the fetus, using high-confidence cellular molecular markers. While some genes and splice variants were present throughout pregnancy, an abundant number of transcripts were uniquely expressed at different time points in pregnancy and associated with distinct fetal co-morbidities (respiratory distress and gavage feeding), indicating fetal immaturity. Conclusions: The AF transcriptome exhibits unique cell- and organ-selective expression patterns at different time points in pregnancy that can potentially identify fetal organ maturity and predict neonatal morbidity. Developing novel biomarkers indicative of the maturation of multiple organ systems can improve upon our current methods of fetal maturity testing which focus solely on the lung, and better inform obstetrical decisions regarding delivery timing.
Project description:To investigate the exosomal miRNA changes under the inflammatory reaction, LPS (100 μg/kg body weight) was intraperitoneally injected into the mice at 15 days of pregnancy. Premature births has been found after approximately 48 h of treatment. When bleeding found in vagina, the uterus and other embryo without breaking water were selected in asepsis condition. The amniotic fluid were selected and isolated exosome to analyze the expression of miRNAs compared with cesarean sections.
Project description:The interplay between genetic and environmental factors during pregnancy can predispose to inflammatory diseases postnatally, including eosinophilic esophagitis (EoE), a chronic allergic disease triggered by food. Herein, we examined the effects of amniotic fluid (AF) on esophageal epithelial differentiation and responsiveness to proallergic stimuli. Multiplex analysis of AF revealed the expression of 66 cytokines, whereas five cytokines including IL-4 and thymic stromal lymphopoietin (TSLP) were not detected. Several proinflammatory cytokines including TNFα and IL-12 were highly expressed in the AF from women who underwent preterm birth, whereas EGF was the highest in term birth samples. Exposure of esophageal epithelial cells to AF resulted in transient phosphorylation of ERK1/2 and the transcription of early response genes, highlighting the direct impact of AF on esophageal epithelial cells. In a three-dimensional spheroid model, AF modified the esophageal epithelial differentiation program and enhanced the transcription of IL-13-target genes, including CCL26 and CAPN14, which encodes for a major genetic susceptibility locus for eosinophilic esophagitis. Notably, CAPN14 exhibited upregulation in spheroids exposed to preterm but not term AF following differentiation. Collectively, our findings call attention to the role of AF as a potential mediator of the intrauterine environment that influences subsequent esophageal disorders.
Project description:We investigated a potential role for SP-A in human pregnancy and parturition by examining SP-A expression patterns in amniotic fluid and the amnion