Project description:Background: The Malnad Gidda are unique dwarf Bos indicus cattle native to heavy rainfall Malnad and coastal areas of Karnataka in India. These cattle are highly adapted to harsh climatic conditions and are more resistant to Foot and Mouth disease as compared to other breeds of B.indicus. Since the first genome reference became available from B.taurus Hereford breed, only a few other breeds have been genotyped using high-throughput platforms. Also despite the known reports on high diversity within indicine breeds as compared to taurine breeds, only one draft genome of Nellore and horn transcriptome of Kankrej breed were sequenced at base level resolution. Because of the special characteristics Malnad Gidda possess, it becomes the choice of breed among many indicine cows to study at molecular level and genotyping. Results: Sequencing mRNA from the PBMCs isolated from blood of one selected Malnad Gidda bull resulted in generation of 55 million paired-end reads of 100bp length. Raw sequencing data is processed to trim the adaptor and low quality bases, and are aligned against the whole genome and transcript assemblies of Bos taurus UMD 3.1 and Bos indicus (Nellore breed) respectively. About 72% of the sequenced reads from our study could be mapped against the B.taurus genome where as only 41% of reads could be mapped against the Bos indicus transcript assembly. Transcript assembly from the alignment carried out against the annotated B.taurus UMD 3.1 genome resulted in identification of ~10,000 genes with significant expression (FPKM>1). In a similar analysis against the B.indicus Kankrej assembled transcripts we could identify only ~6,000 transcripts. From the variant analysis of the sequencing data we found ~10,000 SNPs in coding regions among which ~9,000 are novel and ~6,400 are amino acid changing. Conclusions: For the first time we have genotyped and explored the transcriptome of B.indicus Malnad Gidda breed. A comparative analysis of mapping the RNA-Seq data against the available reference genome and transcript sequences is demonstrated. An enhanced utility of transcript sequencing could be achieved by improving or completing the sequence assembly of any B.indicus breed to better characterize the indicine breeds for productivity features and selective breeding.
Project description:We used gene expression accompanied by physical characteristics and gill Na+/K+-ATPase activity to analyze physiological differences associated with two life history variations of juvenile fall Chinook Salmon in the Snake River basin. Subyearlings originating in the Snake River typically migrate seaward as subyearlings, whereas many subyearlings from the Clearwater River delay seaward migration during summer and complete seaward migration the following spring as yearlings. We examined gill Na+/K+-ATPase activity and gene expression of subyearlings at different times during rearing and seaward emigration. Natural-origin Snake River subyearlings rearing under an increasing photoperiod and seasonally increasing temperatures showed a typical increasing pattern of parr to smolt gill Na+/K+-ATPase activity development, which then declined into autumn. In contrast, Clearwater River subyearlings that had experienced cooler temperatures showed no pattern of increasing gill Na+/K+-ATPase activities and were not different from parr. Liver transcription of genes involved in DNA repair and binding, the cell cycle, metabolism (steroid, fatty acid and other metabolic pathways) iron homeostasis, heme and oxygen binding, the immune response, and male sexual development were enriched amongst genes differentially expressed between Snake River parr versus smolts. Gene expression results confirmed that Clearwater River subyearlings were parr-like in their physiological status. By autumn, subyearlings had low gill Na+/K+-ATPase activities despite their large size and external smolt characteristics. We suggest that environmental factors like temperature and photoperiod influence subyearling physiological status in each river that ultimately dictates juvenile life history pathways. Non-migrating and migrating natural subyearling fall Chinook salmon were collected from the Snake River. Non-migrating natural subyearling fall Chinook salmon were collected from the Clearwater River. Twelve fish were collected at each of four different time points for a total of 48 fish. Total RNA was extracted from the liver of each fish. Equal amounts of RNA from three fish were pooled to create four pools of RNA per time point. Each RNA pool was hybridized to an array for a total of 16 arrays with four arrays per time point.
Project description:Our genomic, bulk and single-cell transcriptomic, functional, and developmental characterization of the Terrazzo corn snake color morph and the extensive comparison with wild-type snakes puts forward the dual role of PMEL in snake skin coloration, both in the differentiation of chromatophores during embryogenesis and the melanogenesis in melanophores.