Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:Gluten-containing grains cause adverse health effects in individuals with celiac disease. Fermentation of these grains results in gluten-derived polypeptides with largely uncharacterized sizes and sequences, which may still trigger an immune response. This research used N-terminal labeling mass spectrometry to characterize protein hydrolysates during each stage of bench-scale brewing, including malting, mashing, boiling, fermentation, and aging. Gluten hydrolysates from each brewing step were tracked and the immunotoxic potential was evaluated in silico. The results indicate that proteolysis and precipitation of gliadins occurring during brewing differ by protein region and brewing stage. The termini of gliadins were hydrolyzed throughout the entire brewing process, but the central regions remained relatively stable. Most hydrolysis occurred during malting, and most precipitation occurred during boiling. The addition of yeast yielded new cleavage sites but did not result in complete hydrolysis. Consistent detection of peptides within the clinically important regions of gliadin corroborated the hydrolytic resistance of this region. N-terminal labeling mass spectrometry served as a novel approach to track the fate of gliadin/gluten throughout bench-scale brewing. Consistently identified fragments could serve as improved targets for detection of hydrolyzed gluten in fermented products.
Project description:The dynamics of the Saccharomyces carlsbergensis brewing yeast transcriptome during a production scale lager beer fermentation. The transcriptome of a lager brewing yeast (Saccharomyces carlsbergensis, syn. of S. pastorianus), was analysed at 12 different time points spanning a production-scale lager beer fermentation. Generally, the average expression rapidly increased and had a maximum value on day 2, then decreased as the sugar got consumed. Especially genes involved in protein and lipid biosynthesis or glycolysis were highly expressed during the beginning of the fermentation. Similarities as well as significant differences in expression profiles could be observed when comparing to a previous transcriptome analysis of a laboratory yeast grown in YPD. The regional distribution of various expression levels on the chromosomes appeared to be random or near-random and no reduction in expression near telomeres was observed.
Project description:Saccharomyces pastorianus lager brewing yeasts are domesticated hybrids of Saccharomyces cerevisiae and cold-tolerant Saccharomyces eubayanus. To better understand the contribution of both parental genomes to maltose metabolism in brewing wort, this study focuses on maltose transport in the S. eubayanus type strain CBS12357T/FM1318T. To obtain complete sequences of the MAL loci of this strain, a near-complete genome assembly was generated using the Oxford Nanopore Technology MinION sequencing platform. Except for CHRXII, all sixteen chromosomes were assembled as single contigs. Four loci harboring putative maltose transporter genes (SeMALT1-4), located in subtelomeric regions of CHRII, CHRV, CHRXIII and CHRXVI, were completely resolved. The near-identical loci on CHRV and CHRXVI strongly resembled canonical S. cerevisiae MAL loci, while those on CHRII and CHRXIII showed different structures suggestive of gene loss. Functionality of the SeMALT1-4-encoded transporters was confirmed by their ability to restore growth on maltose, but not on maltotriose, of a maltose-transport-deficient S. cerevisiae strain. Simultaneous CRISPR-Cas9-assisted deletion of SeMALT2 and SeMALT4, which shared 99.7 % sequence identity, eliminated growth of S. eubayanus CBS12357T on maltose. Transcriptome analysis of S. eubayanus CBS12357T established that, in maltose-grown cultures, SeMALT2 and SeMALT4 were expressed at much higher levels than SeMALT1 and SeMALT3, thus resolving the apparent discrepancy between heterologous expression and deletion studies. These results represent a first genomic and physiological characterization of maltose transport in S. eubayanus CBS12357T and provides a valuable resource for further industrial exploitation of this yeast.