Project description:Mardinoglu2015 - Tissue-specific genome-scale
metabolic network - Adipose tissue
This model is described in the article:
The gut microbiota modulates
host amino acid and glutathione metabolism in mice.
Mardinoglu A, Shoaie S, Bergentall
M, Ghaffari P, Zhang C, Larsson E, Bäckhed F, Nielsen
J.
Mol. Syst. Biol. 2015; 11(10):
834
Abstract:
The gut microbiota has been proposed as an environmental
factor that promotes the progression of metabolic diseases.
Here, we investigated how the gut microbiota modulates the
global metabolic differences in duodenum, jejunum, ileum,
colon, liver, and two white adipose tissue depots obtained from
conventionally raised (CONV-R) and germ-free (GF) mice using
gene expression data and tissue-specific genome-scale metabolic
models (GEMs). We created a generic mouse metabolic reaction
(MMR) GEM, reconstructed 28 tissue-specific GEMs based on
proteomics data, and manually curated GEMs for small intestine,
colon, liver, and adipose tissues. We used these functional
models to determine the global metabolic differences between
CONV-R and GF mice. Based on gene expression data, we found
that the gut microbiota affects the host amino acid (AA)
metabolism, which leads to modifications in glutathione
metabolism. To validate our predictions, we measured the level
of AAs and N-acetylated AAs in the hepatic portal vein of
CONV-R and GF mice. Finally, we simulated the metabolic
differences between the small intestine of the CONV-R and GF
mice accounting for the content of the diet and relative gene
expression differences. Our analyses revealed that the gut
microbiota influences host amino acid and glutathione
metabolism in mice.
This model is hosted on
BioModels Database
and identified by:
MODEL1509220031.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:Identifying gene expression changes in adipose tissue of lipodystrophic Pparg<ldi/+> targeted mice Experiment Overall Design: RNA from epididymal white adipose pads of three 10-week-old Pparg<ldi/+> males and three litter-matched WT controls was analyzed by MOE430v2.0 GeneChipâ?¢ arrays, one mouse per array.
Project description:Identifying gene expression changes in adipose tissue of lipodystrophic aP2-nSREBP1c trangenic mice Experiment Overall Design: RNA from epididymal white adipose pads of three 10-week-old aP2-nSREBP1c transgenic males and three litter-matched WT controls was analyzed by MOE430v2.0 GeneChip⢠arrays, one mouse per array.
Project description:Mardinoglu2015 - Tissue-specific genome-scale
metabolic network - Embryonic tissue
This model is described in the article:
The gut microbiota modulates
host amino acid and glutathione metabolism in mice.
Mardinoglu A, Shoaie S, Bergentall
M, Ghaffari P, Zhang C, Larsson E, Bäckhed F, Nielsen
J.
Mol. Syst. Biol. 2015; 11(10):
834
Abstract:
The gut microbiota has been proposed as an environmental
factor that promotes the progression of metabolic diseases.
Here, we investigated how the gut microbiota modulates the
global metabolic differences in duodenum, jejunum, ileum,
colon, liver, and two white adipose tissue depots obtained from
conventionally raised (CONV-R) and germ-free (GF) mice using
gene expression data and tissue-specific genome-scale metabolic
models (GEMs). We created a generic mouse metabolic reaction
(MMR) GEM, reconstructed 28 tissue-specific GEMs based on
proteomics data, and manually curated GEMs for small intestine,
colon, liver, and adipose tissues. We used these functional
models to determine the global metabolic differences between
CONV-R and GF mice. Based on gene expression data, we found
that the gut microbiota affects the host amino acid (AA)
metabolism, which leads to modifications in glutathione
metabolism. To validate our predictions, we measured the level
of AAs and N-acetylated AAs in the hepatic portal vein of
CONV-R and GF mice. Finally, we simulated the metabolic
differences between the small intestine of the CONV-R and GF
mice accounting for the content of the diet and relative gene
expression differences. Our analyses revealed that the gut
microbiota influences host amino acid and glutathione
metabolism in mice.
This model is hosted on
BioModels Database
and identified by:
MODEL1509220001.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:Mardinoglu2015 - Tissue-specific genome-scale
metabolic network - Brain medulla
This model is described in the article:
The gut microbiota modulates
host amino acid and glutathione metabolism in mice.
Mardinoglu A, Shoaie S, Bergentall
M, Ghaffari P, Zhang C, Larsson E, Bäckhed F, Nielsen
J.
Mol. Syst. Biol. 2015; 11(10):
834
Abstract:
The gut microbiota has been proposed as an environmental
factor that promotes the progression of metabolic diseases.
Here, we investigated how the gut microbiota modulates the
global metabolic differences in duodenum, jejunum, ileum,
colon, liver, and two white adipose tissue depots obtained from
conventionally raised (CONV-R) and germ-free (GF) mice using
gene expression data and tissue-specific genome-scale metabolic
models (GEMs). We created a generic mouse metabolic reaction
(MMR) GEM, reconstructed 28 tissue-specific GEMs based on
proteomics data, and manually curated GEMs for small intestine,
colon, liver, and adipose tissues. We used these functional
models to determine the global metabolic differences between
CONV-R and GF mice. Based on gene expression data, we found
that the gut microbiota affects the host amino acid (AA)
metabolism, which leads to modifications in glutathione
metabolism. To validate our predictions, we measured the level
of AAs and N-acetylated AAs in the hepatic portal vein of
CONV-R and GF mice. Finally, we simulated the metabolic
differences between the small intestine of the CONV-R and GF
mice accounting for the content of the diet and relative gene
expression differences. Our analyses revealed that the gut
microbiota influences host amino acid and glutathione
metabolism in mice.
This model is hosted on
BioModels Database
and identified by:
MODEL1509220000.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:Mardinoglu2015 - Tissue-specific genome-scale
metabolic network - Cerebellum
This model is described in the article:
The gut microbiota modulates
host amino acid and glutathione metabolism in mice.
Mardinoglu A, Shoaie S, Bergentall
M, Ghaffari P, Zhang C, Larsson E, Bäckhed F, Nielsen
J.
Mol. Syst. Biol. 2015; 11(10):
834
Abstract:
The gut microbiota has been proposed as an environmental
factor that promotes the progression of metabolic diseases.
Here, we investigated how the gut microbiota modulates the
global metabolic differences in duodenum, jejunum, ileum,
colon, liver, and two white adipose tissue depots obtained from
conventionally raised (CONV-R) and germ-free (GF) mice using
gene expression data and tissue-specific genome-scale metabolic
models (GEMs). We created a generic mouse metabolic reaction
(MMR) GEM, reconstructed 28 tissue-specific GEMs based on
proteomics data, and manually curated GEMs for small intestine,
colon, liver, and adipose tissues. We used these functional
models to determine the global metabolic differences between
CONV-R and GF mice. Based on gene expression data, we found
that the gut microbiota affects the host amino acid (AA)
metabolism, which leads to modifications in glutathione
metabolism. To validate our predictions, we measured the level
of AAs and N-acetylated AAs in the hepatic portal vein of
CONV-R and GF mice. Finally, we simulated the metabolic
differences between the small intestine of the CONV-R and GF
mice accounting for the content of the diet and relative gene
expression differences. Our analyses revealed that the gut
microbiota influences host amino acid and glutathione
metabolism in mice.
This model is hosted on
BioModels Database
and identified by:
MODEL1509220002.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:Mardinoglu2015 - Tissue-specific genome-scale
metabolic network - Colon
This model is described in the article:
The gut microbiota modulates
host amino acid and glutathione metabolism in mice.
Mardinoglu A, Shoaie S, Bergentall
M, Ghaffari P, Zhang C, Larsson E, Bäckhed F, Nielsen
J.
Mol. Syst. Biol. 2015; 11(10):
834
Abstract:
The gut microbiota has been proposed as an environmental
factor that promotes the progression of metabolic diseases.
Here, we investigated how the gut microbiota modulates the
global metabolic differences in duodenum, jejunum, ileum,
colon, liver, and two white adipose tissue depots obtained from
conventionally raised (CONV-R) and germ-free (GF) mice using
gene expression data and tissue-specific genome-scale metabolic
models (GEMs). We created a generic mouse metabolic reaction
(MMR) GEM, reconstructed 28 tissue-specific GEMs based on
proteomics data, and manually curated GEMs for small intestine,
colon, liver, and adipose tissues. We used these functional
models to determine the global metabolic differences between
CONV-R and GF mice. Based on gene expression data, we found
that the gut microbiota affects the host amino acid (AA)
metabolism, which leads to modifications in glutathione
metabolism. To validate our predictions, we measured the level
of AAs and N-acetylated AAs in the hepatic portal vein of
CONV-R and GF mice. Finally, we simulated the metabolic
differences between the small intestine of the CONV-R and GF
mice accounting for the content of the diet and relative gene
expression differences. Our analyses revealed that the gut
microbiota influences host amino acid and glutathione
metabolism in mice.
This model is hosted on
BioModels Database
and identified by:
MODEL1509220003.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:Mardinoglu2015 - Tissue-specific genome-scale
metabolic network - Eye
This model is described in the article:
The gut microbiota modulates
host amino acid and glutathione metabolism in mice.
Mardinoglu A, Shoaie S, Bergentall
M, Ghaffari P, Zhang C, Larsson E, Bäckhed F, Nielsen
J.
Mol. Syst. Biol. 2015; 11(10):
834
Abstract:
The gut microbiota has been proposed as an environmental
factor that promotes the progression of metabolic diseases.
Here, we investigated how the gut microbiota modulates the
global metabolic differences in duodenum, jejunum, ileum,
colon, liver, and two white adipose tissue depots obtained from
conventionally raised (CONV-R) and germ-free (GF) mice using
gene expression data and tissue-specific genome-scale metabolic
models (GEMs). We created a generic mouse metabolic reaction
(MMR) GEM, reconstructed 28 tissue-specific GEMs based on
proteomics data, and manually curated GEMs for small intestine,
colon, liver, and adipose tissues. We used these functional
models to determine the global metabolic differences between
CONV-R and GF mice. Based on gene expression data, we found
that the gut microbiota affects the host amino acid (AA)
metabolism, which leads to modifications in glutathione
metabolism. To validate our predictions, we measured the level
of AAs and N-acetylated AAs in the hepatic portal vein of
CONV-R and GF mice. Finally, we simulated the metabolic
differences between the small intestine of the CONV-R and GF
mice accounting for the content of the diet and relative gene
expression differences. Our analyses revealed that the gut
microbiota influences host amino acid and glutathione
metabolism in mice.
This model is hosted on
BioModels Database
and identified by:
MODEL1509220004.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.