Project description:Most human epithelial tumors harbor numerous alterations, making it difficult to predict which genes are required for tumor survival. To systematically identify cancer dependencies, we analyzed 501 genome-scale loss-of-function screens performed in diverse human cancer cell lines. We developed DEMETER, an analytical framework that segregates on- from off-target effects of RNAi. 769 genes were differentially required in subsets of these cell lines at a threshold of six SDs from the mean. We found predictive models for 426 dependencies (55%) by nonlinear regression modeling considering 66,646 molecular features. Many dependencies fall into a limited number of classes, and unexpectedly, in 82% of models, the top biomarkers were expression based. We demonstrated the basis behind one such predictive model linking hypermethylation of the UBB ubiquitin gene to a dependency on UBC. Together, these observations provide a foundation for a cancer dependency map that facilitates the prioritization of therapeutic targets.
Project description:Exciting therapeutic targets are emerging from CRISPR-based screens of high mutational-burden adult cancers. A key question, however, is whether functional genomic approaches will yield new targets in pediatric cancers, known for remarkably few mutations, which often encode proteins considered challenging drug targets. To address this, we created a first-generation pediatric cancer dependency map representing 13 pediatric solid and brain tumor types. Eighty-two pediatric cancer cell lines were subjected to genome-scale CRISPR-Cas9 loss-of-function screening to identify genes required for cell survival. In contrast to the finding that pediatric cancers harbor fewer somatic mutations, we found a similar complexity of genetic dependencies in pediatric cancer cell lines compared to that in adult models. Findings from the pediatric cancer dependency map provide preclinical support for ongoing precision medicine clinical trials. The vulnerabilities observed in pediatric cancers were often distinct from those in adult cancer, indicating that repurposing adult oncology drugs will be insufficient to address childhood cancers.
Project description:Chemical probes are lacking for most human proteins. Covalent chemistry represents an attractive strategy for expanding the ligandability of the proteome, and chemical proteomics has revealed numerous electrophile-reactive cysteines on diverse proteins. Determining which of these covalent binding events impact protein function, however, remains challenging. Here, we describe a base-editing strategy to infer the functionality of cysteines by quantifying the impact of their missense mutation on cell proliferation. We show that the resulting atlas, which covers >13,800 cysteines on >1,750 cancer dependency proteins, correctly predicts the essentiality of cysteines targeted by cancer therapeutics and, when integrated with chemical proteomic data, identifies essential, ligandable cysteines on >110 cancer dependency proteins. We finally demonstrate how measurements of reactivity in native versus denatured proteomes can further discriminate essential cysteines amendable to chemical modification from those buried in protein structures, providing a valuable resource to prioritize the pursuit of small-molecule probes with high function-perturbing potential.
Project description: Covalent chemistry represents an attractive strategy for expanding the ligandability of the proteome, and chemical proteomics has revealed numerous electrophile-reactive cysteines on diverse human proteins. Determining which of these covalent binding events impact protein function, however, remains challenging. Here, we describe a base-editing strategy to infer the functionality of cysteines by quantifying the impact of their missense mutation on cancer cell proliferation. The resulting atlas, which covers >13,800 cysteines on >1,750 cancer dependency proteins, confirms the essentiality of cysteines targeted by covalent drugs and, when integrated with chemical proteomic data, identifies essential, ligandable cysteines in >110 cancer dependency proteins. We further show that a stereoselective and site-specific ligand targeting an essential cysteine in TOE1 inhibits the nuclease activity of this protein through an apparent allosteric mechanism. Our findings thus describe a versatile method and valuable resource to prioritize the pursuit of small-molecule probes with high function-perturbing potential.
Project description:Chemical probes are lacking for most human proteins. Covalent chemistry represents an attractive strategy for expanding the ligandability of the proteome, and chemical proteomics has revealed numerous electrophile-reactive cysteines on diverse proteins. Determining which of these covalent binding events impact protein function, however, remains challenging. Here, we describe a base-editing strategy to infer the functionality of cysteines by quantifying the impact of their missense mutation on cell proliferation. We show that the resulting atlas, which covers >13,800 cysteines on >1,750 cancer dependency proteins, correctly predicts the essentiality of cysteines targeted by cancer therapeutics and, when integrated with chemical proteomic data, identifies essential, ligandable cysteines on >110 cancer dependency proteins. We finally demonstrate how measurements of reactivity in native versus denatured proteomes can further discriminate essential cysteines amendable to chemical modification from those buried in protein structures, providing a valuable resource to prioritize the pursuit of small-molecule probes with high function-perturbing potential.
Project description:Emerging evidence suggests that the cryptic translation beyond the annotated translatome may yield proteins with important function. However, the role and function mechanism of these cryptic ORFs in complex diseases such as cancer remain largely unknown. To fill this gap, we combined ribosome profiling and CRISPR/Cas9 screen to systematically identify the colorectal cancer (CRC) dependency on cryptic ORFs.
Project description:Phosphoinositide 3-kinase gamma (PI3Kγ) is implicated as a target to repolarize tumor-associated macrophages and promote anti-tumor immune responses in solid cancers. However, cancer cell-intrinsic roles of PI3Kγ are unclear. Here, by integrating unbiased genome-wide CRISPR interference screening with functional analyses across acute leukemias, we define a selective dependency on the PI3Kγ complex in a high-risk subset that includes myeloid, lymphoid, and dendritic lineages. This dependency is characterized by innate inflammatory signaling and elevation of PIK3R5, which encodes a regulatory subunit of PI3Kγ that we find stabilizes the active enzymatic complex when overexpressed. Mechanistically, we identify PAK1 as a noncanonical substrate of PI3Kγ that mediates this cell-intrinsic dependency independently of AKT. PI3Kγ inhibition dephosphorylates PAK1, activates a transcriptional network of NFκB-related tumor suppressor genes, and impairs mitochondrial oxidative phosphorylation. We find that treatment with the selective PI3Kγ inhibitor eganelisib is effective in leukemias with activated PIK3R5, either at baseline or by exogenous inflammatory stimulation. Notably, the combination of eganelisib and cytarabine prolongs survival over either agent alone, even in patient-derived leukemia xenografts with low baseline PIK3R5 expression, as residual leukemia cells after cytarabine treatment have elevated G protein-coupled purinergic receptor activity and PAK1 phosphorylation. Taken together, our study reveals acute leukemia dependency on a noncanonical PI3Kγ signaling pathway amenable to near-term evaluation in patients using inhibitors already in clinical development.