Project description:Dynamic remodeling in architecture and function of mammalian brain, especially in primate, rely on a precisely orchestrated molecular and cellular regulation at distinct levels. Here, we applied comprehensive RNA-seq and CAGE-Seq analysis to characterize dynamics of lncRNA expression in Rhesus macaque brain across postnatal development and aging. We identified 18 anatomically diverse lncRNA modules and 14 mRNA modules representing spatial, age and sex specificities respectively. Highly spatiotemporal- and sex-specific dynamic changes in lncRNA but mRNA expression and the negative correlation between lncRNAs and mRNAs, functionally associate with brain development and aging, especially in the neocortex. Together with in situ hybridization (ISH) and quantitative real time-PCR (qRT-PCR) data, our findings provide an initial insight into spatial-, age- and sex-related dynamics of lncRNA expression during postnatal brain development and aging in macaque, implying that high dynamics of lncRNA expression might represent a previously unappreciated regulatory system in shaping brain architecture and function.
Project description:Dynamic remodeling in architecture and function of mammalian brain, especially in primate, rely on a precisely orchestrated molecular and cellular regulation at distinct levels. Here, we applied comprehensive RNA-seq and CAGE-Seq analysis to characterize dynamics of lncRNA expression in Rhesus macaque brain across postnatal development and aging. We identified 18 anatomically diverse lncRNA modules and 14 mRNA modules representing spatial, age and sex specificities respectively. Highly spatiotemporal- and sex-specific dynamic changes in lncRNA but mRNA expression and the negative correlation between lncRNAs and mRNAs, functionally associate with brain development and aging, especially in the neocortex. Together with in situ hybridization (ISH) and quantitative real time-PCR (qRT-PCR) data, our findings provide an initial insight into spatial-, age- and sex-related dynamics of lncRNA expression during postnatal brain development and aging in macaque, implying that high dynamics of lncRNA expression might represent a previously unappreciated regulatory system in shaping brain architecture and function.
Project description:Genetic studies have revealed an essential role for cytosine DNA methylation in gene regulation. However, its spatiotemporal distribution in the developing embryo remains obscure. Here, we profiled the DNA methylation landscape of 12 mouse tissues/organs at 8 developmental stages spanning from early embryo to birth. In-depth analysis of such spatiotemporal epigenome maps uncovered widespread regulatory DNA element dynamics during embryogenesis. We systematically delineated methylation variants that likely drive gene transcription, whose human counterparts are enriched for genetic risk factors of human diseases. Strikingly, these predicted regulatory elements predominantly lose CG methylation during fetal development, whereas the trend is reversed after birth. Key transcription factors, essential for early tissue/organ development, accumulate non-CG methylation within their gene bodies, coinciding with transcriptional repression during late stage fetal development. These spatiotemporal epigenomic datasets provide a valuable resource for studies of gene regulation during mammalian tissue/organ progression and the possible origins of human developmental diseases.
Project description:Differences between species promote stable coexistence in a resource-limited environment. These differences can result from interspecies competition leading to character shifts, a process referred to as character displacement. While character displacement is often interpreted as a consequence of genetically fixed trait differences between species, it can also be mediated by phenotypic plasticity in response to the presence of another species. Here, we test whether phenotypic plasticity leads to a shift in proteome allocation during co-occurrence of two bacterial species from the abundant, leaf-colonizing families Sphingomonadaceae and Rhizobiaceae in their natural habitat. Upon mono-colonizing of the phyllosphere, both species exhibit specific and shared protein functions indicating a niche overlap. During co-colonization, quantitative differences in the protein repertoire of both bacterial populations occur as a result of bacterial coexistence in planta. Specifically, the Sphingomonas strain produces enzymes for the metabolization of xylan, while the Rhizobium strain reprograms its metabolism to beta-oxidation of fatty acids fueled via the glyoxylate cycle and adapts its biotin acquisition. We demonstrate the conditional relevance of cross-species facilitation by mutagenesis leading to loss of fitness in competition in planta. Our results show that dynamic character displacement and niche facilitation mediated by phenotypic plasticity can contribute to species coexistence.
Project description:The rise of multi-drug resistance in bacterial pathogens imposes the need to study these organisms from new angles. A little explored outset is to scrutinize bacterial niche adaptations and interactions among pathogenic and commensal bacteria, because they can provide a better understanding of the fitness of pathogens in their human host. We have previously shown that co-culturing of the pathogen Staphylococcus aureus with co-resident Klebsiella oxytoca or Bacillus thuringiensis wound isolates resulted in reduced levels of virulence factor secretion, suggesting that the presence of these co-resident bacteria would modulate S. aureus virulence. In the present study, we performed an in-depth investigation of changes in S. aureus gene expression upon co-cultivation with K. oxytoca and B. thuringiensis under infection-mimicking conditions. To this end, we profiled the cellular proteomes of the co-existing bacteria with special focus on S. aureus. In parallel, we employed RNA sequencing to highlight global changes in staphylococcal behaviour. The results imply that co-colonizing bacteria from chronic wounds can pacify S. aureus, and this conclusion was verified in a Galleria mellonella infection model. Altogether, our findings show that the presence of K. oxytoca and B. thuringiensis leads to massive rearrangements in S. aureus physiology and substantial reduction in virulence.