Project description:16s RNA gene sequencing data from seawater, bed sediment and steel corrosion samples from Shoreham Harbour, UK, collected to allow bacterial species comparisons between microbially influenced corrosion, the surrounding seawater, and the sea bed sediment at the seafloor and 50cm depth below seafloor.
Project description:The experiment compared flounder from the North Sea and the Baltic sea and their reactions on being exposed to water of different salinities
Project description:Chemical analysis of the compounds present in sediment, although informative, often is not indicative of the downstream biological effects that these contaminants exert on resident aquatic organisms. More direct molecular methods are needed to determine if marine life is affected by exposure to sediments. In this study, we used an aquatic multispecies microarray and q-PCR to investigate the effects on gene expression in juvenile sea bream (Sparus aurata) of two contaminated sediments defined as sediment 1 and 2 respectively, from marine areas in Northern Italy.
Project description:Sulfur metabolism in the deep-sea cold seep has been mentioned to have an important contribution to the biogeochemical cycle of sulfur in previous studies. And sulfate reducing bacteria have also been considered to be a dominant microbial population in the deep-sea cold seep and play a crucial role in this process. However, most of sulfate reducing bacteria from cold seep still cannot be purely cultured under laboratory conditions, therefore the actual sulfur metabolism pathways in sulfate reducing bacteria from the deep-sea cold seep have remained unclear. Here, we isolate and pure culture a typical sulfate reducing bacterium Desulfovibrio marinus CS1 from the sediment sample of the deep-sea cold seep in the South China Sea, which provides a probability to understand the sulfur metabolism in the cold seep.
Project description:The dataset represents the proteome analysis of six sampling dates during the phytoplankton bloom at the island of Helgoland in the North Sea at the long term research station ‘Kabeltonne’ (54° 11' 17.88'' N, 7° 54' 0'' E) in 2016.
Project description:The available energy and carbon sources for prokaryotes in the deep ocean remain still largely enigmatic. Reduced sulfur compounds, such as thiosulfate, are a potential energy source for both auto- and heterotrophic marine prokaryotes. Shipboard experiments performed in the North Atlantic using Labrador Sea Water (~2000 m depth) amended with thiosulfate led to an enhanced prokaryotic dissolved inorganic carbon (DIC) fixation.
2021-04-30 | GSE136729 | GEO
Project description:Lysogenic phages from potential pathogenic Vibrio spp. of the North Sea