Project description:Midgut is an important immune organ of Aedes aegypti. To help further studies on host-pathogen interaction of midgut, we established a midgut cell atlas using scRNA-seq.
Project description:This study seeks to understand the mechanism of midgut escape and identify candidate genes and potential biochemical pathways involved in the midgut infection of chikungunya virus (CHIKV) in vector mosquito Aedes aegypti. We conducted a comparative transcriptomic analysis of midgut samples of female mosquitoes,after feeding a saline meal (SM) or a protein meal (PM) containing CHIKV. Our results allow the conclusion that midgut-expressed genes not involved in blood or protein digestion can be identified by substituting either a bloodmeal or PM for a SM. In presence of orally acquired CHIKV in midguts of SM fed mosquitoes, the majority of the upregulated DE genes belonged to the categories immune system and catalytic activity. These genes included several serine-type endopeptidases, trypsins, collagenases, and M1 zinc metalloproteases, which potentially could be involved in the midgut escape mechanism of CHIKV. One of the serine metalloproteinase genes, AeLT, was further analyzed showing strong (MMP) collagenase activity in vitro. Our results present a set of candidate genes potentially responsible for overcoming the arbovirus midgut escape barrier (MEB) in Ae. aegypti.
Project description:The female mosquito Aedes aegypti requires amino acids and other nutrients like heme and iron from a blood meal to initiate vitellogenesis. Heme is a pro-oxidant molecule that acts as a nutrient, signaling molecule and in large quantities, as a toxin. Ae. aegypti has developed a few strategies to handle heme toxicity, as during a typical meal ~10mM is released into the midgut lumen. These strategies include heme aggregation to the peritrophic matrix and the degradation of heme by heme oxygenase in the cytosol of the midgut epithelium. However, despite the importance of heme as a nutrient and toxin, the mechanism of entry into the midgut epithelial cells is not currently known. As no heme transport proteins in have been identified in any dipteran, heme fluorescent analog studies were performed to visualize changes in expression caused by heme followed by global expression analyses performed in midgut tissues using NGS-based RNA sequencing with the end goal to identify the gene(s) that encode the membrane bound heme import proteins responsible for heme uptake during blood digestion. Examination of differential expression of mRNA transcripts at the gene level, found 65 significant DE genes at the adjusted p-value cut off of 0.0001, 38 of which are TM containing and only 2 of which showed high expression changes, AAEL019570 (-2.04 log2, ~0.243), unknown function, and AAEL000717 (3.91 log2, ~15.03), a protocadherin. This list was further reduced to 16 genes with potential heme import function and 7 genes with potential heme export function by examination of differential expression, number of TM domains and function relating to transport. As very few highly differentially expressed genes were found in the analysis, heme import may be controlled by a redundant system of multiple transport proteins instead of a single highly expressed one. Alternatively, heme transport in Ae. aegypti could be regulated post-translationally.
Project description:Mosquitoes are the most notorious hematophagous insects and due to their blood feeding behavior and genetic compatibility, numerous mosquito species are highly efficient vectors for certain human pathogenic parasites and viruses. The mosquito midgut is the principal organ of blood meal digestion and nutrient absorption. It is also the initial site of infection with blood meal acquired parasites and viruses. We conducted an analysis based on single-nucleus RNA sequencing(snRNA-Seq) to assess the cellular diversity of the midgut and how individual cells respond to blood meal ingestion to facilitate its digestion.
Project description:This analysis compare gene expression between 4 day old sugar fed female and male Aedes aegypti mosquitoes. Keywords: Aedes aegypti sex specific expression
Project description:This study aimed at comparing gene transcription using microarrays and protein expression using 2D-DIGE between an Aedes aegypti insecticide-resistant strain (LiTOX) selected for 28 generations at the larval stage with field-collected leaf litter containing persistent Bacillus thuringiensis var. israelensis (Bti) toxins and the parental strain (Bora-Bora) susceptible to all insecticides. We focused on the tissue where the mode of action of the insecticide takes place: the midgut of the larvae.
Project description:Rockefeller and Singapore strain Aedes aegypti female mosquitoes differ in the number of bacteria present in the midgut. Females from each strain were either maintained on 3% sucrose solution, fed a sterile blood meal, or fed a blood meal containing a cocktail of bacteria. Differential transcript abundance was compared between females from each strain/treatment combination and a common reference sample pool. The overall goal was to determine how gene expression in Rockefeller females differs from Singapore females in order to better understand why the gut microbiome differs between the strains.
Project description:This analysis defines the adult female and developmental specific transcriptomes of Aedes aegypti. Keywords: Aedews aegypti, development, gene expression
Project description:We used RNA-sequencing to identify differentially expressed genes in the midgut of Aedes aegypti that contribute to the field derivied dengue susceptible (Cali-S) and dengue refractory (Cali-R) phenotypes