Project description:IntroductionFeline parvovirus (FPV), a single-stranded DNA virus, is accountable for causing feline panleukopenia, a highly contagious and often lethal disease that primarily affects cats. The epidemiology prevalence and pathogenicity of FPV in certain regions of China, however, remains unclear. The aim of this research was to investigate the epidemiology of FPV in different regions of China in 2021 and compare its infectivity and pathogenicity.MethodsIn this research, a total of 36 FPV strains were obtained from diverse regions across China. Phylogenetic analysis was performed based on the VP2 and NS1 sequences, and two representative strains, FPV027 and FPV072, which belonged to different branches, were selected for comparative assessment of infectivity and pathogenicity.Results and discussionThe results revealed that all strains were phylogenetically classified into two groups, G1 and G2, with a higher prevalence of G1 strains in China. Both in vitro and in vivo experiments demonstrated that FPV072 (G1 group) exhibited enhanced infectivity and pathogenicity compared to FPV027 (G2 Group). The structural alignment of the VP2 protein between the two viruses revealed mutations in residues 91, 232, and 300 that may contribute to differences in infectivity and pathogenicity. The findings from these observations will contribute significantly to the overall understanding of the molecular epidemiology of FPV in China and facilitate the development of an effective FPV vaccine.
Project description:BackgroundBreast cancer (BC) is the most common malignancy in women and the second leading cause of cancer-related death; chemoresistance is still a clinical challenge mainly because of the different molecular features of this kind of tumour. Doxorubicin (Doxo) is widely used despite its adverse effects and the common onset of resistance. Chaperone-Mediated Autophagy (CMA) has been identified as an important mechanism through which chemotherapeutics can exert their cytotoxic effects and, in this context, LAMP-2A, the key player of CMA, can be a useful biomarker.MethodsA cohort of patients and breast cancer cells have been screened for Doxo effect and CMA activation by analysing the LAMP-2A level. Molecular silencing has been used to clarify CMA role in BC responsiveness to treatments. Low Doxo doses were combined with other drugs (TMZ or PX-478, a HIF-1α inhibitor) to evaluate their cytotoxic ability and their role in modulating CMA.ResultsIn this paper, we showed that CMA is an important mechanism mediating the responsiveness of breast cancer cell to different treatments (Doxo and TMZ, as suggested by triple negative cells that are TMZ-resistant and fails to activate CMA). The LAMP-2A expression level was specific for different cell lines and patient-derived tumour subtypes, and was also useful in discriminating patients for their survival rates. Moreover, molecular silencing or pharmacological blockage of HIF-1α activity reverted BC resistance to TMZ. The combination of low-dose Doxo with TMZ or PX-478 showed that the drug associations have synergistic behaviours.ConclusionHere, we demonstrated that CMA activity exerts a fundamental role in the responsiveness to different treatments, and LAMP-2A can be proposed as a reliable prognostic biomarker in breast cancer. In this context, HIF-1α, a potential target of CMA, can also be assessed as a valuable therapeutic target in BC in view of identifying new, more efficient and less toxic therapeutic drug combinations. Moreover, the possibility to combine Doxo with other drugs acting on different but coherent molecular targets could help overcome resistance and open the way to a decrease in the dose of the single drugs.
Project description:The concordant mode approach (CMA) is a promising new scheme for dramatically increasing the system size and level of theory achievable in quantum chemical computations of molecular vibrational frequencies. Here, we achieve advances in the CMA hierarchy by computations targeting CCSD(T)/cc-pVTZ (coupled cluster singles and doubles with perturbative triples using a correlation-consistent polarized-valence triple-ζ basis set) benchmarks within the G2 molecular test set, executing a statistical analysis for 1501 frequencies from 111 compounds and then separately solving the refractory case of pyridine. First, MP2/cc-pVTZ (second-order Møller-Plesset perturbation theory with the same basis set) proves to be an excellent and preferred choice for generating the underlying (Level B) normal modes of the CMA scheme. Utilizing this Level B within the CMA-0A method reproduces the 1501 benchmark frequencies with a mean absolute error (MAE) of only 0.11 cm-1 and an attendant standard deviation of 0.49 cm-1. Second, a convergent CMA-2 method is constituted that allows efficient computation of higher level (Level A) frequencies to any reasonable accuracy threshold by using only Hartree-Fock (HF) and MP2 or density functional theory (DFT) data to generate ξ parameters, which select the sparse off-diagonal force field elements for explicit evaluation at Level A. When Level B = MP2/cc-pVTZ, a cutoff of ξ = 0.02 provides an average maximum absolute error per molecule of only 0.17 cm-1 by incurring merely a 33% increase in average cost over CMA-0A. This CMA-2 method also eradicates the 4 problematic CMA-0A outliers of pyridine with even less effort (ξ = 0.04, 22% increase). Finally, the newly developed CMA procedures are shown to be highly successful when applied to 1-(1H-pyrrol-3-yl)ethanol, a new test molecule with diverse types of vibration.