Project description:Colonization of deep-sea hydrothermal vents by invertebrates was made efficient through their adaptation to a symbiotic lifestyle with chemosynthetic bacteria, the primary producers of these ecosystems. Anatomical adaptations such as the establishment of specialized cells or organs have been evidenced in numerous deep-sea invertebrates. However, very few studies detailed global inter-dependencies between host and symbionts in these ecosystems. In this study, we proposed to describe, using a proteo-transcriptomic approach, the effects of symbionts on the deep-sea mussel Bathymodiolus azoricus’ molecular biology. We induced an in situ depletion of symbionts and compared the proteo-transcriptome of the gills of mussels in three conditions: symbiotic mussels (natural population), symbiont-depleted mussels and aposymbiotic mussels
2019-02-13 | GSE124699 | GEO
Project description:Host-symbiont interactions in the chemosynthetic Riftia model symbiosis
Project description:Endosymbiotic bacteria associated with eukaryotic hosts are omnipresent in nature, particularly in insects. Studying the bacterial side of host-symbiont interactions is, however, often limited by the unculturability and genetic intractability of the symbionts. Spiroplasma poulsonii is a maternally transmitted bacterial endosymbiont that is naturally associated with several Drosophila species. S. poulsonii strongly affects its host’s physiology, for example by causing male killing or by protecting it against various parasites. Despite intense work on this model since the 1950s, attempts to cultivate endosymbiotic Spiroplasma in vitro have failed so far. Here, we developed a method to sustain the in vitro culture of S. poulsonii by optimizing a commercially accessible medium. We also provide a complete genome assembly, including the first sequence of a natural plasmid of an endosymbiotic Spiroplasma species. Last, by comparing the transcriptome of the in vitro culture to the transcriptome of bacteria extracted from the host, we identified genes putatively involved in host-symbiont interactions. This work provides new opportunities to study the physiology of endosymbiotic Spiroplasma and paves the way to dissect insect-endosymbiont interactions with two genetically tractable partners.
Project description:The deep-sea tubeworm Riftia pachyptila is a model system for a mutualistic association: The adult worm has no digestive system, but completely relies on one phylotype of endosymbiotic chemosynthetic bacteria for nutrition. The bacteria, in turn, are provisioned by the host. Metabolism and physiology of this symbiosis, particularly of the uncultured symbiont, have been subject to various studies. Yet, how both partners interact on the molecular level remains largely unknown. To study these host-symbiont interactions in detail, we sequenced the R. pachyptila host transcriptome de novo, and conducted comprehensive metaproteomic comparisons of symbiont-containing and symbiont-free R. pachyptila tissues under energy-rich and energy-limiting conditions. Our results demonstrate that R. pachyptila invests a considerable part of its proteome to provision the symbionts with inorganic compounds. It acquires symbiont-derived biomass primarily by digesting parts of the symbiont population. The R. pachyptila immune system apparently not only protects the holobiont from pathogens, but is also involved in symbiont population control. The symbiont expresses a repertoire of proteins dedicated to communication with the host, including eukaryote-like proteins that may counteract phagocytosis. During energy limitation, i.e., when reduced sulfur compounds are lacking, the host apparently increases symbiont digestion. We show here an intricate network of interaction pathways that shapes the R. pachyptila holobiont. Together with the metabolic flexibility of the association under varying energy conditions, this probably forms the basis for the success of this tight association under the highly challenging deep-sea conditions.