Project description:A major reservoir for spread of the emerging pathogen Acinetobacter baumannii is hopsital surfaces, where bacteria persist in a desiccated state. To identify gene products influencing desiccation survival, a transposon sequencing (Tn-seq) screen was performed. Using this approach, we identified genes both positively and negatively impacting the desiccation tolerance of A. baumannii.
Project description:In recent years, the Gram-negative bacterium Acinetobacter baumannii has garnered considerable attention for its unprecedented capacity to rapidly develop resistance to antibacterial therapeutics. This is coupled with the seemingly epidemic emergence of new hyper-virulent strains. Although strain-specific differences for A. baumannii isolates have been well described, these studies have primarily focused on proteinaceous factors. At present, only limited publications have investigated the presence and role of small regulatory RNA (sRNA) transcripts. Herein, we perform such an analysis, describing the RNA-seq-based identification of 78 A. baumannii sRNAs in the AB5075 background. Together with six previously identified elements, we include each of these in a new genome annotation file, which will serve as a tool to investigate regulatory events in this organism. Our work reveals that the sRNAs display high expression, accounting for >50 % of the 20 most strongly expressed genes. Through conservation analysis we identified six classes of similar sRNAs, with one found to be particularly abundant and homologous to regulatory, C4 antisense RNAs found in bacteriophages. These elements appear to be processed from larger transcripts in an analogous manner to the phage C4 molecule and are putatively controlled by two further sRNAs that are strongly antisense to them. Collectively, this study offers a detailed view of the sRNA content of A. baumannii, exposing sequence and structural conservation amongst these elements, and provides novel insight into the potential evolution, and role, of these understudied regulatory molecules. This study is based on the annotation of novel sRNAs on basis of an Acinetobacter baumannii RNA sequencing dataset. Each sample was generated by pooling three independent biological replicate RNA preps
Project description:Calprotectin (CP) inhibits bacterial viability through extracellular chelation of transition metals. However, how CP influences general metabolism remains largely unexplored. We show here that CP restricts bioavailable Zn and Fe to the pathogen Acinetobacter baumannii, inducing an extensive multi-metal perturbation of cellular physiology. Detailed here are the RNA sequencing files of WT A. baumannii ATCC 17978 grown plus or minus recombinant human calprotectin.
Project description:Different digestion methods and extraction detergents were examined for membrane proteome sample preparation, and label-free quantitative proteome analysis of the polymyxin B induced Acinetobacter baumannii ATCC 19606 membrane proteome were performed based on nano LC-MS/MS.
Project description:We performed RNAseq for gene expression analysis for six strains of Acinetobacter Baumannii isolated from blood samples (defined as strains 1, 2, 3, 4 and 6) of patients hospitalized at the University Hospital \\"San Giovanni di Dio e Ruggi d'Aragona\\" (Salerno, Italy)