Project description:Successful immune responses are dependent on a precisely controlled balance between transcription and mRNA degradation. mRNA decay is driven through RNA-binding proteins (RBP), yet it remains unclear, how and when an individual mRNA molecule is selected for degradation. We investigated this fundamental question by using the anti-inflammatory RBP tristetraprolin (TTP, also known as Zfp36) as a model. Here, we show that TTP determines the fate of its targets concomitantly with their synthesis by binding to the pre-mRNA in the nucleus. Furthermore, we provide evidence that TTP orchestrates the target destabilization via a hierarchical molecular assembly that culminates by the association of mature mRNA with the RNA degradation machinery in the cytoplasm. The early fate decision in the life cycle of a TTP target mRNA prevents the translation of inflammatory mediators, particularly cytokine mRNAs, and promotes efficient cessation of the immune response. Importantly, the TTP homolog ZFP36L1 displays similar characteristics, suggesting a conserved mode of action within the ZFP36 family of RBPs.
Project description:RNA-binding proteins (RBPs) facilitate post-transcriptional control of eukaryotic gene expression at multiple levels. The RBP tristetraprolin (TTP/Zfp36) is a signal-induced phosphorylated anti-inflammatory protein guiding unstable mRNAs of pro-inflammatory proteins for degradation and preventing translation. Using iCLIP, we have identified numerous mRNA targets bound by wild-type TTP and by a non-MK2-phosphorylatable TTP mutant (TTP-AA) in 1h LPS-stimulated macrophages and correlated their interaction with TTP to changes at the level of mRNA abundance and translation in a transcriptome-wide manner. The close similarity of the transcriptome of TTP-deficient and TTP-expressing macrophages upon short LPS stimulation suggested an effective inactivation of TTP by MK2 under these conditions whereas retained RNA-binding capacity of TTP-AA to 3’UTRs caused profound changes in the transcriptome and translatome, altered NF-κB-activation and induced cell death. Increased TTP binding to the 3'UTR of feedback inhibitor mRNAs, such as Ier3, Dusp1 or Tnfaip3, in the absence of MK2-dependent TTP neutralization resulted in a strong reduction of their protein synthesis contributing to the deregulation of the NF-κB-signaling pathway. Taken together, our study uncovers a role for TTP in NF-κB-signaling and highlights the importance of fine-tuned TTP activity-regulation by MK2 in order to control feedback signaling during the inflammatory response.
Project description:RNA-binding proteins (RBPs) facilitate post-transcriptional control of eukaryotic gene expression at multiple levels. The RBP tristetraprolin (TTP/Zfp36) is a signal-induced phosphorylated anti-inflammatory protein guiding unstable mRNAs of pro-inflammatory proteins for degradation and preventing translation. Using iCLIP, we have identified numerous mRNA targets bound by wild-type TTP and by a non-MK2-phosphorylatable TTP mutant (TTP-AA) in 1h LPS-stimulated macrophages and correlated their interaction with TTP to changes at the level of mRNA abundance and translation in a transcriptome-wide manner. The close similarity of the transcriptome of TTP-deficient and TTP-expressing macrophages upon short LPS stimulation suggested an effective inactivation of TTP by MK2 under these conditions whereas retained RNA-binding capacity of TTP-AA to 3’UTRs caused profound changes in the transcriptome and translatome, altered NF-κB-activation and induced cell death. Increased TTP binding to the 3'UTR of feedback inhibitor mRNAs, such as Ier3, Dusp1 or Tnfaip3, in the absence of MK2-dependent TTP neutralization resulted in a strong reduction of their protein synthesis contributing to the deregulation of the NF-κB-signaling pathway. Taken together, our study uncovers a role for TTP in NF-κB-signaling and highlights the importance of fine-tuned TTP activity-regulation by MK2 in order to control feedback signaling during the inflammatory response.
Project description:RNA-binding proteins (RBPs) facilitate post-transcriptional control of eukaryotic gene expression at multiple levels. The RBP tristetraprolin (TTP/Zfp36) is a signal-induced phosphorylated anti-inflammatory protein guiding unstable mRNAs of pro-inflammatory proteins for degradation and preventing translation. Using iCLIP, we have identified numerous mRNA targets bound by wild-type TTP and by a non-MK2-phosphorylatable TTP mutant (TTP-AA) in 1h LPS-stimulated macrophages and correlated their interaction with TTP to changes at the level of mRNA abundance and translation in a transcriptome-wide manner. The close similarity of the transcriptome of TTP-deficient and TTP-expressing macrophages upon short LPS stimulation suggested an effective inactivation of TTP by MK2 under these conditions whereas retained RNA-binding capacity of TTP-AA to 3’UTRs caused profound changes in the transcriptome and translatome, altered NF-κB-activation and induced cell death. Increased TTP binding to the 3'UTR of feedback inhibitor mRNAs, such as Ier3, Dusp1 or Tnfaip3, in the absence of MK2-dependent TTP neutralization resulted in a strong reduction of their protein synthesis contributing to the deregulation of the NF-κB-signaling pathway. Taken together, our study uncovers a role for TTP in NF-κB-signaling and highlights the importance of fine-tuned TTP activity-regulation by MK2 in order to control feedback signaling during the inflammatory response.
Project description:Controlled decay of cytokine and chemokine mRNAs restrains the time and amplitude of inflammatory responses. Tristetraprolin (TTP) binds to AU-rich elements in 3´ untranslated regions of mRNA and targets the bound mRNA for degradation. We have addressed here the function of TTP in balancing the macrophage activation state by a comprehensive analysis of TTP-dependent mRNA decay in LPS-stimulated macrophages from WT and TTP-deficient mice. We compared mRNA stability in LPS-treated BMDMs from WT and TTP-/- mice by microarray-based measurement of the remnant mRNA after transcriptional blockade with actinomycin D (act D). To increase the sensitivity of the mRNA decay profiling we inhibited the LPS-activated p38 MAPK with the specific inhibitor SB203580 since p38 MAPK negatively regulates the mRNA-destabilizing activity of TTP. LPS stimulation was for 3h before addition of act D. RNA was harvested at 0', 45' and 90' thereafter.
Project description:The fidelity of immune responses depends on a timely controlled and selective mRNA degradation that is largely driven by RNA-binding proteins (RBPs). It remains unclear whether the selection of an individual mRNA molecule for degradation is governed by stochastic or directed processes. Here, we show that tristetraprolin (TTP, also known as ZFP36), an essential anti-inflammatory RBP, destabilizes target mRNAs via a hierarchical molecular assembly. The formation of the assembly strictly relies on the interaction of TTP with RNA. The TTP homolog ZFP36L1 exhibits similar requirements, indicating a broader relevance of this regulatory program. Unexpectedly, the assembly of the cytoplasmic mRNA-destabilization complex is licensed in the nucleus by TTP binding to pre-mRNA, while cytoplasmic mRNA does not constitute a de novo TTP target. Hence, the fate of an inflammation-induced mRNA is decided concomitantly with its synthesis. This mechanism prevents the translation of excessive and potentially harmful inflammation mediators, irrespective of transcription.
Project description:(1) We sought to characterize the genomic profiles of H3K18Ac and H3K18Cr before and after the activation of the LPS-induced inflamatory response to elucidate the role of differential acylation in the process of gene activation. We performed chromatin Immunoprecipitation followed by massively parallel sequencing (ChIP-seq) with two antibodies, anti-H3K18Ac and anti-H3K18Cr, in RAW264.7 cells +/- LPS stimulation. (2) We also sought to characterize the effect of increasing the cellular concentration of crotonyl-CoA prior to LPS-stimulation on the expression of different classes of LPS-induced genes. We performed RNA-seq on mRNA isolated from RAW264.7 cells under four conditions a) untreated and unstimulated, b) untreated and LPS stimulated, c) crotonate pre-treated and unstimulated, d) crotonate pre-treated and LPS stimulated. Sequencing was performed on the HiSeq2000 (Illumina).
Project description:Identification of biotinylated proteins through pull-down. RAW264.7 cells stably expressing a Dox-inducible TurboID-TTP fusion protein were treated with LPS or Epoxomicin for 4 h, followed by 15 min of biotin labeling in the cell medium. TurboID without fusion was used as a control.
2023-03-24 | PXD036714 | Pride
Project description:Pre-mRNA fate decision by TTP safeguards the fidelity of the inflammatory response