Project description:The copper redhorse (Moxostoma hubbsi) is an endangered fish endemic to Quebec, Canada that is only known to spawn in two locations within the Richelieu River, a waterway draining a significant area of agricultural land. Accordingly, concerns have been raised over the impacts that agricultural pesticide contamination of spawning grounds and nursery habitats within the Richelieu River may have on early life stage copper redhorse. We assessed the effects of contaminants on early life stages of copper redhorse and river redhorse (Moxostoma carinatum), a closely related fish that shares the copper redhorse’s habitat and spawning grounds but is distributed more widely and is not yet listed as endangered. Copper and river redhorse embryos (1000 each) were exposed to either Richelieu River water in an in-situ flow-through system or to laboratory water used as a control. We assessed embryos hatching time, incidence of deformities and survival in copper and river redhorses. We then performed RNA sequencing on copper redhorse larvae to better understand changes due to river water exposure. We identified 341 compounds in the river water that were absent from lab water. Pesticide concentrations in the river peaked following rainfall during the spawning season. Embryos exposed to river water hatched prematurely at 63.0 and 59.2 cumulative degree days (CDD) compared to 65.4 and 69.9 CDD in laboratory water for river and copper redhorse, respectively. Copper redhorse exposed to river water also had a significantly lower survival rate than laboratory water (73% vs. 93%). RNA sequencing of copper redhorse revealed 18 differentially expressed genes (DEGs) following river water exposure. Eight of the upregulated DEGs (cd44, il1b, lamb3, lamc2, tgm5, orm1, saa, acod1) are linked to immune function and injury response and 7 of the downregulated DEGs (cpa2, ctrb, cela2a, ctrl, cpa1, prss1, cel) are involved with digestion and nutrient absorption. This study provided valuable data on the effects of anthropogenic contaminants present in the Richelieu River and increased our knowledge on the individual and mixture effects they have on an endangered fish.
Project description:This experiment aims at analyzing crossover distribution in male and female meiosis, in the Arabidopsis. Wild-type Col plant was crossed with Ler plant to produce F1 hybrid. Then, the F1 hybrid was crossed as female or as male with wild-type Col to generate two BC1 populations. Leaf samples from plants of the obtained BC1 populations were used for DNA purification and library preparation for Illumina sequencing (HiSeq 3000 2x150 bp), performed by the Max Planck-Genome-centre Cologne, Germany (https://mpgc.mpipz.mpg.de/home/) and Novogene.
Project description:Liver sinusoidal endothelial cells (LSECs) from C57Bl/6J male mice obtained from Charles River Laboratory (Sulzfeld, Germany) were cultured on fibronectin coated plates in 5% oxygen atmosphere in AIM-V with serum-free supplements for 1h, 10h, or 48h. Data from quantitative proteomics using a tandem mass tag (TMT)6-plex strategy on an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific)), using a TMT SPS MS3 method (Navarrete-Perea, Yu et al. 2018).
Project description:With its 2.5 Mb DNA genome packed in amphora-shaped particles of bacterium-like dimension (1.2 µm in length, 0.5 µm in diameter), the Acanthamoeba-infecting Pandoravirus salinus remained the most spectacular and intriguing virus since its description in 2013. Following its isolation from shallow marine sediment off the coast of central Chile, that of its relative Pandoravirus dulcis from a fresh water pond near Melbourne, Australia, suggested that they were the first representatives of an emerging worldwide-distributed family of giant viruses. This was further suggested when P. inopinatum discovered in Germany, was sequenced in 2015. We now report the isolation and genome sequencing of three new strains (P. quercus, P.neocaledonia, P. macleodensis) from France, New Caledonia, and Australia. Using a combination of transcriptomic, proteomic, and bioinformatic analyses, we found that these six viruses share enough distinctive features to justify their classification in a new family, the Pandoraviridae, distinct from that of other large DNA viruses.
Project description:The long-term viability of Pacific salmon stocks and the fisheries they support are threatened if large numbers die prematurely en-route to spawning grounds. Physiological profiles that were correlated with the fate of wild sockeye salmon during river migration were discovered using functional genomics studies on biopsied tissues. Three independent biotelemetry studies tracked the biopsied fish after tagging in the marine environment over 200 km from the Fraser River, in the lower river 69 km from the river mouth and at the spawning grounds. Salmon carrying the poor performance (unhealthy) profile in the ocean exhibited a 4-times lower probability of arriving to spawning grounds than those with a healthy genomic signature, although generally migrated into the river and to the spawning grounds faster. A related unhealthy signature observed in the river was associated with a 30% reduction in survival to spawning grounds in one of the three stocks tested. At spawning grounds, the same poor performance signature was associated with twice the pre-spawning mortality compared with healthy fish. Functional analysis revealed that the unhealthy signature, which intensified during migration to spawning grounds, was consistent with an intracellular pathogenic infection, likely a virus. These results are the first to suggest a pathogen present in salmon in the marine environment could be a major source of mortality during migration and spawning in the river. This series is of gill expression profiles from the study of fish sampled and tagged in the ocean and tracked as they entered the river system and swam towards the spawning grounds.
Project description:The long-term viability of Pacific salmon stocks and the fisheries they support are threatened if large numbers die prematurely en-route to spawning grounds. Physiological profiles that were correlated with the fate of wild sockeye salmon during river migration were discovered using functional genomics studies on biopsied tissues. Three independent biotelemetry studies tracked the biopsied fish after tagging in the marine environment over 200 km from the Fraser River, in the lower river 69 km from the river mouth and at the spawning grounds. Salmon carrying the poor performance (unhealthy) profile in the ocean exhibited a 4-times lower probability of arriving to spawning grounds than those with a healthy genomic signature, although generally migrated into the river and to the spawning grounds faster. A related unhealthy signature observed in the river was associated with a 30% reduction in survival to spawning grounds in one of the three stocks tested. At spawning grounds, the same poor performance signature was associated with twice the pre-spawning mortality compared with healthy fish. Functional analysis revealed that the unhealthy signature, which intensified during migration to spawning grounds, was consistent with an intracellular pathogenic infection, likely a virus. These results are the first to suggest a pathogen present in salmon in the marine environment could be a major source of mortality during migration and spawning in the river. This series are gill expression profiles from the study of fish sampled and tagged in the lower river and tracked as they swam towards the spawning grounds.