Project description:Hispanic/Latino populations possess a complex genetic structure that reflects recent admixture among and potentially ancient substructure within Native American, European, and West African source populations. Here, we quantify genome-wide patterns of SNP and haplotype variation among 100 individuals with ancestry from Ecuador, Colombia, Puerto Rico, and the Dominican Republic genotyped using Illumina technology.
Project description:70mer probes were designed to detect plant viruses infection in genus level. This microarray platform is able to detect 169 plant virus species of 13 virus genera.
Project description:We report a global survey of viral small RNAs (vsmRNAs) from >200 Aedes aegypti samples to identify many mosquito viruses that actively infect this prominent arboviral vector. Ae. aegypti viruses in the Americas were abundant, with some displaying geographical boundaries. Viruses infecting Asian Ae. aegypti were similar to those in the Americas and revealed the first wild example of dengue vsmRNAs. African Ae. aegypti displayed vsmRNAs from viruses unique to these African strains. Academic lab colonies generally lacked viruses, yet two commercial strains were deeply infected by a tombus-like virus that is related to plant viruses. Comparing matched viral long RNAs to vsmRNAs revealed viral transcripts evading the mosquito RNA interference (RNAi) pathway. By infecting mosquito cells with Ae. aegypti homogenates, we generated stably infected cell lines which produced vsmRNAs that were comparable to native mosquito vsmRNA patterns. Lastly, we demonstrate that these stably infected mosquito cells producing vsmRNAs can exert gene silencing of reporters bearing viral sequence segments, providing a potential explanation for how Ae. aegypti can tolerate the persistence of viral infections. This vsmRNA genomics approach in Ae. aegypti can add to existing vector surveillance approaches by discovering new viruses that persist in mosquito populations.
Project description:70mer probes were designed to detect plant viruses infection in genus level. This microarray platform is able to detect 169 plant virus species of 13 virus genera. Virus sampels were extracted from infected plant hosts. Genomic RNA was extracted and hybridized to the microarray.
Project description:In plants and some animal lineages, RNA silencing is an efficient and adaptable defense mechanism against viruses. To counter it, viruses encode suppressor proteins that interfere with RNA silencing. Phloem-restricted viruses are spreading at an alarming rate and cause substantial reduction of crop yield, but how they interact with their hosts at the molecular level is still insufficiently understood. Here, we investigate the antiviral response against phloem-restricted turnip yellows virus (TuYV) in the model plant Arabidopsis thaliana. Using a combination of genetics, deep sequencing, and mechanical vasculature enrichment, we show that the main axis of silencing active against TuYV involves 22-nt vsiRNA production by DCL2, and their preferential loading into AGO1. Moreover, we identify vascular secondary siRNA produced from plant transcripts and initiated by DCL2-processed AGO1-loaded vsiRNA Unexpectedly, and despite the viral encoded VSR P0 previously shown to mediate degradation of AGO proteins, vascular AGO1 undergoes specific post-translational stabilization during TuYV infection. Collectively, our work uncovers the complexity of antiviral RNA silencing against phloem-restricted TuYV and prompts a re-assessment of the role of its suppressor of silencing P0 during genuine infection.