Project description:Genome-wide epigenetic changes such as histone modifications form a critical layer of gene regulations and have been implicated in a number of different disorders such as cancer and inflammation. Progress has made to decrease the input required for gold-standard genome-wide profiling tools like chromatin immunoprecipitation followed by next generation sequencing (i.e. ChIP-seq) to allow scarce primary tissues of specific type from patients and lab animals to be tested. However, there has been very little effort to rapidly increase the throughput of these low-input tools. In this report, we demonstrate LIFE-ChIP-seq (Low-Input Fluidized-bed Enabled Chromatin Immunoprecipitation combined with sequencing), an automated and high-throughput microfluidic platform capable of running multiple sets of ChIP assays in as little as 1 h with as few as 50 cells per assay. Our technology will enable testing of a large number of samples and replicates with low-abundance primary samples in the context of precision medicine.
Project description:Effect of ethanol dosage and upflow velocity on taxonomic profile and metabolic potential in fluidized bed reactor applied to surfactant removal
Project description:Methanogenic community structure and dynamics were investigated in two different, replicated anaerobic wastewater treatment reactor configurations [inverted fluidized bed (IFB) and expanded granular sludge bed (EGSB)] treating synthetic dairy wastewater, during operating temperature transitions from 37°C to 25°C, and from 25°C to 15°C, over a 430-day trial. Non-metric multidimensional scaling (NMS) and moving-window analyses, based on quantitative real-time PCR data, along with denaturing gradient gel electrophoresis (DGGE) profiling, demonstrated that the methanogenic communities developed in a different manner in these reactor configurations. A comparable level of performance was recorded for both systems at 37°C and 25°C, but a more dynamic and diverse microbial community in the IFB reactors supported better stability and adaptative capacity towards low temperature operation. The emergence and maintenance of particular bacterial genotypes (phylum Firmicutes and Bacteroidetes) was associated with efficient protein hydrolysis in the IFB, while protein hydrolysis was inefficient in the EGSB. A significant community shift from a Methanobacteriales and Methanosaetaceae towards a Methanomicrobiales-predominated community was demonstrated during operation at 15°C in both reactor configurations.
Project description:Through the pyrosequencing analysis of samples from support mateial and phase separator from the anaerobic fluidized bed reactor total of 83 genera was found, which 18 are involved to the nonionic surfactant degradation.