Project description:16S amplicon pool analyses of the four gut sections of the wood-feeding beetle, Odontotaenius disjunctus The beetle is purely wood feeding, and we aim to first characterize the community that exist within the gut sections
Project description:We have measured flight effect in gene expression using individual-based RNA-seq data from two regional populations of the Glanville fritillary butterfly (Melitaea cinxia). Largest number of differentially expressed genes were between populations (3840 genes) and between males and females (1622 genes). 801 genes had significant flight effect. Enriched GO and KEGG categories among these genes included hypoxia, glycolysis, and TCA cycle.
Project description:16S amplicon pool analyses of the four gut sections of the wood-feeding beetle, Odontotaenius disjunctus The beetle is purely wood feeding, and we aim to first characterize the community that exist within the gut sections 4 beetles, four gut sections per beetle, one PhyloChip per gut section, total = 16 chips
Project description:We have compared allelic and gene expression variation using individual-based RNA-seq data from four regional populations of the Glanville fritillary butterfly (Melitaea cinxia) in northern Europe. Two of the populations represent fragmented habitat and two continuous habitat. Based on sequence information, we constructed genealogy for four populations. Based on gene expression, we found 1841 genes to be differentially expressed between two different landscape types. Our results demonstrate genomic adaptations to living in fragmented landscapes, which are likely to be related to phenotypic life-history adaptations that have been documented for many species. RNA-seq from thorax, 174 individuals from four populations.
Project description:We have compared allelic and gene expression variation using individual-based RNA-seq data from four regional populations of the Glanville fritillary butterfly (Melitaea cinxia) in northern Europe. Two of the populations represent fragmented habitat and two continuous habitat. Based on sequence information, we constructed genealogy for four populations. Based on gene expression, we found 1841 genes to be differentially expressed between two different landscape types. Our results demonstrate genomic adaptations to living in fragmented landscapes, which are likely to be related to phenotypic life-history adaptations that have been documented for many species.
Project description:<p><strong>BACKGROUND:</strong> The human intestinal microbiome plays a central role in overall health status, especially in early life stages. 16S rRNA amplicon sequencing is used to profile its taxonomic composition; however, multiomic approaches have been proposed as the most accurate methods for study of the complexity of the gut microbiota. In this study, we propose an optimized method for bacterial diversity analysis that we validated and complemented with metabolomics by analyzing fecal samples.</p><p><strong>METHODS:</strong> Forty-eight different analytical combinations regarding (1) 16S rRNA variable region sequencing, (2) a feature selection approach, and (3) taxonomy assignment methods were tested. A total of 18 infant fecal samples grouped depending on the type of feeding were analyzed by the proposed 16S rRNA workflow and by metabolomic analysis.</p><p><strong>RESULTS:</strong> The results showed that the sole use of V4 region sequencing with ASV identification and VSEARCH for taxonomy assignment produced the most accurate results. The application of this workflow showed clear differences between fecal samples according to the type of feeding, which correlated with changes in the fecal metabolic profile.</p><p><strong>CONCLUSION:</strong> A multiomic approach using real fecal samples from 18 infants with different types of feeding demonstrated the effectiveness of the proposed 16S rRNA-amplicon sequencing workflow.</p>
2021-08-18 | MTBLS2942 | MetaboLights
Project description:Comparing different sample handling conditions for 16S rRNA amplicon sequencing