Project description:Serum miRNAs are considered useful as non-invasive biomarkers for various diseases, but the optimal method for extracting RNA from serum is currently unknown. In this study, several RNA extraction kits were used to determine which kit is the optimal method. RNA was extracted from the serum of 8-week-old C57BL/6NJcl male mice according to the protocol of each RNA extraction kit. The yield of extracted RNA samples was calculated and electrophoretic patterns were evaluated by Agilent bioanalyzer. Expression patterns of the extracted RNA samples were confirmed by Agilent mouse miRNA microarray. The results showed significant differences in RNA yields in the miRNeasy serum/plasma advanced kit, and mirVana™ PARIS™ RNA and Native Protein Purification Kit compared to almost all other samples. Furthermore, two peaks were identified in the miRNeasy serum/plasma advanced kit using small RNA kit of Agilent bioanalyzer, one at 20-40 nucleotides (nt) and the other around 40-100 nt whereas the other reagents had a single peak. In addition, a high correlation was observed between the two RNA extraction kits in microarray. These results suggest that the above two kits are suitable for miRNA extraction from mouse serum.
Project description:Serum microRNAs (miRNAs) are considered useful as non-invasive biomarkers for different diseases. However, the optimal method for extracting RNAs from serum is currently unknown. In the present study, several RNA extraction kits were used to examine the optimal kit. RNAs were extracted from the serum of 8-week-old C57BL/6NJcl male mice following the protocol of each RNA extraction kit. The yield of the extracted RNA samples was calculated, and an Agilent Bioanalyzer was used to assess the electrophoretic patterns. An Agilent mouse miRNA microarray was utilized to confirm the expression patterns of the extracted RNA samples. The results revealed significant differences in RNA yields from the miRNeasy Serum/Plasma Advanced kit and mirVana™ PARIS™ RNA and Native Protein Purification Kit compared with almost all other samples. Further, two peaks were determined in the miRNeasy Serum/Plasma Advanced kit using a small RNAs kit of Agilent Bioanalyzer, including one at 20-40 nucleotides (nt) and another at ~40-100 nt, whereas the other reagents had a single peak. This revealed that the extracted RNAs may differ in composition based on the RNA extraction method. Some types of miRNAs were only detected with certain RNA extraction reagents. This suggested that different RNA extraction reagents may cause differences in the types of miRNAs detected. On the other hand, the miRNAs commonly expressed by the three RNA extraction reagents are highly correlated in expression levels.
Project description:Entamoeba histolytica membrane proteins are important players in the parasite’s pathogenicity. However, most of the proteins have not been identified. This study reports the membrane proteins extracted using three extractions methods: two commercial kits (ProteoExtract® from Calbiochem and ProteoPrep® from Sigma), and a conventional laboratory method. The resulting membrane fractions (MF) and cytosolic fractions (CF)were analysed using LC-ESI-MS/MS. The proteins identified in at least two out of three biological replicates revealed a total of 490, 492, and 587 MF proteins extracted using the ProteoExtract® kit, ProteoPrep® kit and conventional method, respectively. Meanwhile, 487, 611 and 343 proteins were identified in the CF extracted using the ProteoExtract® kit, ProteoPrep® kit and conventional method, respectively. Analysis of the identified MF and CF proteins extracted by the respective extraction kits suggests that the ProteoPrep® extraction kit was the most selective in separating MF and CF among the three extraction methods.
Project description:Effect of DNA extraction methods on the determination of the structure of microbial communities in the phosphogypsum waste heap soil
Project description:MicroRNAs (miRNA) are non-coding RNAs that negatively regulate gene expression by preventing the translation of specific mRNA transcripts. Since miRNAs are stably expressed in bodily fluids, there is growing interest in profiling these miRNAs, as it is minimally invasive and cost-effective as a diagnostic matrix. A technical hurdle in studying miRNA dynamics is the ability to reliably extract miRNA as small sample volumes and low RNA abundance create challenges for extraction and downstream applications. The purpose of this study was to develop a pipeline for the recovery of miRNA using small volumes of archived serum samples. The RNA was extracted employing several widely utilized RNA isolation kits with and without addition of a carrier. We were able to profile miRNA levels in serum samples using the small RNA sequencing method on the Illumina platform and observed that successful sequencing cannot be predicted by substrate RNA quality. Although the carrier RNA had a significant impact on miRNA measurement, it did not enhance the mapping of any miRBase annotated sequences. However, some of the extraction procedures offer certain advantages: RNA extracted by TRIzol seemed to align to the miRBase best; extractions using TRIzol with carrier yielded higher miRNA-to-small RNA ratios and higher numbers of processed reads, but the majority of the reads were not aligning to miRBase. Our findings illustrate that miRNA extraction and quantification is influenced by the choice of methodologies and by careful selection of an extraction method, permitting archived serum samples to become valuable resources for high-throughput applications.
Project description:Recent advances in (meta)genomic methods have provided new opportunities to examine host-microbe-environment interactions in the human gut. While opportunities exist to extract DNA from freshly sourced colonic tissue there are potentially valuable sources of DNA from historical studies that might also be examined. We examined how four different tissue DNA extraction methods employed in past clinical trials might impact the recovery of microbial DNA from a colonic tissue sample as assessed using a custom designed phylogenetic microarray for human gut bacteria and archaebacteria. While all methods of DNA extraction produced similar phylogenetic profiles some extraction specific biases were also observed. Real time PCR analysis targeting several bacterial groups substantiated this observation. These data suggest that while the efficacy of different DNA extraction methods differs somewhat all the methods tested produce an accurate representation of microbial diversity. This suggests that DNA samples archived in biobanks should be suitable for retrospective analyses.
Project description:We compared 3 small RNA library prep kits (CleanTag, NEXTflex, QIAseq) and two RNA extraction methods (miRNeasy and MagnaZol) on plasma. We report that library preparation has a significant effect upon the miRNA profile detected, with QIAseq libraries exhibiting the least sequencing bias of the three library kits. RNA extraction methods also contribute, to a lesser extent, to the miRNA profile detected, with MagnaZol RNA extraction increasing the percentage of reads mapping to miRNAs and the number of individual miRNAs detected.