Project description:Ulcerative colitis is a chronic inflammatory disorder for which a definitive cure is still missing. This is characterized by an overwhelming inflammatory milieu in the colonic tract where a composite set of immune and non-immune cells orchestrate its pathogenesis. Over the last years, a growing body of evidence has been pinpointing gut virome dysbiosis as underlying its progression. Nonetheless, its role during the early phases of chronic inflammation is far from being fully defined. Here we show the gut virome-associated Hepatitis B virus protein X, most likely acquired after an event of zoonotic spillover, to be associated with the early stages of ulcerative colitis and to induce colonic inflammation in mice. It acts as a transcriptional regulator in epithelial cells, provoking barrier leakage and altering mucosal immunity at the level of both innate and adaptive immunity. This study paves the way to the comprehension of the aetiopathogenesis of intestinal inflammation and encourages further investigations of the virome as a trigger also in other scenarios. Moreover, it provides a brand-new standpoint that looks at the virome as a target for tailored treatments, blocking the early phases of chronic inflammation and possibly leading to better disease management.
Project description:This study aims to explore the relationship between the respiratory virome, specifically bacteriophages, HERV and the host response in ARDS and to assess their value in predicting the prognosis of ARDS.
Project description:This model is from the article:
Reduction of off-flavor generation in soybean homogenates: a mathematical model.
Mellor N , Bligh F , Chandler I , Hodgman C
J. Food Sci.2010 Sep; 75(7): R131-8; PMID: 2153556,
Abstract:
The generation of off-flavors in soybean homogenates such as n-hexanal via the lipoxygenase (LOX) pathway can be a problem in the processed food industry. Previous studies have examined the effect of using soybean varieties missing one or more of the 3 LOX isozymes on n-hexanal generation. A dynamic mathematical model of the soybean LOX pathway using ordinary differential equations was constructed using parameters estimated from existing data with the aim of predicting how n-hexanal generation could be reduced. Time-course simulations of LOX-null beans were run and compared with experimental results. Model L(2), L(3), and L(12) beans were within the range relative to the wild type found experimentally, with L(13) and L(23) beans close to the experimental range. Model L(1) beans produced much more n-hexanal relative to the wild type than those in experiments. Sensitivity analysis indicates that reducing the estimated K(m) parameter for LOX isozyme 3 (L-3) would improve the fit between model predictions and experimental results found in the literature. The model also predicts that increasing L-3 or reducing L-2 levels within beans may reduce n-hexanal generation. PRACTICAL APPLICATION: This work describes the use of mathematics to attempt to quantify the enzyme-catalyzed conversions of compounds in soybean homogenates into undesirable flavors, primarily from the compound n-hexanal. The effect of different soybean genotypes and enzyme kinetic constants was also studied, leading to recommendations on which combinations might minimize off-flavor levels and what further work might be carried out to substantiate these conclusions.
Project description:Analysis of flanking genomic sequences of unique small RNAs enabled identification of 419 miRNAs. Expression analysis revealed that miRNAs were differentially expressed in different tissues and development stages. Prediction of the miRNA target genes suggested that they are involved in important processes in soybean growth and development. Most conserved soybean miRNAs guide the cleavage of conserved genes. Our study significantly increased the number of known conserved and non-conserved miRNAs in soybean. Our description of soybean miRNAs can be used for functional characterization.
Project description:We report the genome-wide small RNA of soybean early maturation seed coat parenchyma compartment soybean early maturation seeds using Illumina high-throughput sequencing technology.
2011-12-22 | GSE34638 | GEO
Project description:Virome analysis using whole body of honey bee (Apis mellifera and Apis cerana) in Bangladesh