Project description:Ulcerative colitis is a chronic inflammatory disorder for which a definitive cure is still missing. This is characterized by an overwhelming inflammatory milieu in the colonic tract where a composite set of immune and non-immune cells orchestrate its pathogenesis. Over the last years, a growing body of evidence has been pinpointing gut virome dysbiosis as underlying its progression. Nonetheless, its role during the early phases of chronic inflammation is far from being fully defined. Here we show the gut virome-associated Hepatitis B virus protein X, most likely acquired after an event of zoonotic spillover, to be associated with the early stages of ulcerative colitis and to induce colonic inflammation in mice. It acts as a transcriptional regulator in epithelial cells, provoking barrier leakage and altering mucosal immunity at the level of both innate and adaptive immunity. This study paves the way to the comprehension of the aetiopathogenesis of intestinal inflammation and encourages further investigations of the virome as a trigger also in other scenarios. Moreover, it provides a brand-new standpoint that looks at the virome as a target for tailored treatments, blocking the early phases of chronic inflammation and possibly leading to better disease management.
Project description:MiRNA plays an important role in post-transcriptional gene regulation in plants. Whether TOR is involved in post-transcriptional gene regulation remains unclear in potato and other plants. In this study, we conducted the high-throughput sequencing of genome-wide miRNAs in the potato seedlings for profiling their expression patterns and identifying TOR related miRNAs in potato.
Project description:Long noncoding RNAs (lncRNAs) represent a class of RNA molecules that are implicated in regulation of gene expression, both in mammals and plants. While much progress has been made in determining the biological functions of lncRNAs in mammals, the functional roles of lncRNAs in plants are still poorly understood. Specifically, the roles of lncRNAs in plant defense responses are yet to be fully explored. Here, we used strand-specific RNA sequencing to identify 1649 lncRNAs in potato (Solanum tuberosum) from stem tissues. The lncRNAs are expressed from all 12 potato chromosomes and generally smaller in size compared to protein-coding genes. Like in other plants, most potato lncRNAs (86%) are transcribed from intergenic regions and possess single exons. A time-course RNA-seq analysis between a tolerant and susceptible potato cultivar challenged with Pectobacterium carotovorum subsp. brasilience revealed that 227 of these lncRNAs could be associated with response to this pathogen. These results suggest that lncRNAs have potential functional roles in potato defense responses. This work provides the foundation for further functional studies in understanding potato defense mechanisms.
Project description:Long noncoding RNAs (lncRNAs) represent a class of RNA molecules that are implicated in regulation of gene expression, both in mammals and plants. While much progress has been made in determining the biological functions of lncRNAs in mammals, the functional roles of lncRNAs in plants are still poorly understood. Specifically, the roles of lncRNAs in plant defense responses are yet to be fully explored. Here, we used strand-specific RNA sequencing to identify 1649 lncRNAs in potato (Solanum tuberosum) from stem tissues. The lncRNAs are expressed from all 12 potato chromosomes and generally smaller in size compared to protein-coding genes. Like in other plants, most potato lncRNAs (86%) are transcribed from intergenic regions and possess single exons. A time-course RNA-seq analysis between a tolerant and susceptible potato cultivar challenged with Pectobacterium carotovorum subsp. brasilience revealed that 227 of these lncRNAs could be associated with response to this pathogen. These results suggest that lncRNAs have potential functional roles in potato defense responses. This work provides the foundation for further functional studies in understanding potato defense mechanisms.
Project description:This study aims to explore the relationship between the respiratory virome, specifically bacteriophages, HERV and the host response in ARDS and to assess their value in predicting the prognosis of ARDS.
Project description:In the present study molecular interactions between potato plants, Colorado potato beetle (CPB) larvae and Potato virus YNTN (PVYNTN) were investigated by analyzing gene expression in potato leaves. Grant ID: J4-4165 Slovenian Research Agency ARRS Growth and defense trade-offs in multitrophic interaction between potato and its two major pests Grant ID: P4-0165 Slovenian Research Agency ARRS Biotechnology and Plant Systems Biology