Project description:Intercropping is a vital technology in resource-limited agricultural systems with low inputs. Peanut/maize intercropping enhances iron (Fe) nutrition in calcareous soil. Proteomic studies of the differences in peanut leaves, maize leaves and maize roots between intercropping and monocropping systems indicated that peanut/maize intercropping not only improves Fe availability in the rhizosphere but also influences the levels of proteins related to carbon and nitrogen metabolism. Moreover, intercropping may enhance stress resistance in the peanut plant (Xiong et al. 2013b). Although the mechanism and molecular ecological significance of peanut/maize intercropping have been investigated, little is known about the genes and/or gene products in peanut and maize roots that mediate the benefits of intercropping. In the present study, we investigated the transcriptomes of maize roots grown in intercropping and monocropping systems by microarray analysis. The results enabled exploration differentially expressed genes in intercropped maize. Peanut (Arachis hypogaea L. cv. Luhua14) and maize (Zea mays L. cv. Nongda108) seeds were grown in calcareous sandy soil in a greenhouse. The soil was enhanced with basal fertilizers [composition (mg·kg−1 soil): N, 100 (Ca (NO3)2·4H2O); P, 150 (KH2PO4); K, 100 (KCl); Mg, 50 (MgSO4·7H2O); Cu, 5 (CuSO4·5H2O); and Zn, 5 (ZnSO4·7H2O)]. The experiment consisted of three cropping treatments: peanut monocropping, maize monocropping and intercropping of peanut and maize. After germination of peanut for 10 days, maize was sown. Maize samples were harvested after 63 days of growth of peanut plants based on the degree of Fe chlorosis in the leaves of monocropped peanut. The leaves of monocropped peanut plants exhibited symptoms of Fe-deficiency chlorosis at 63 days, while the leaves of peanut plants intercropped with maize maintained a green color.
Project description:<p>Biological nitrogen fixation by free-living bacteria and rhizobial symbiosis with legumes plays a key role in sustainable crop production. Here, we study how different crop combinations influence the interaction between peanut plants and their rhizosphere microbiota via metabolite deposition and functional responses of free-living and symbiotic nitrogen-fixing bacteria. Based on a long-term (8 year) diversified cropping field experiment, we find that peanut co-cultured with maize and oilseed rape lead to specific changes in peanut rhizosphere metabolite profiles and bacterial functions and nodulation. Flavonoids and coumarins accumulate due to the activation of phenylpropanoid biosynthesis pathways in peanuts. These changes enhance the growth and nitrogen fixation activity of free-living bacterial isolates, and root nodulation by symbiotic Bradyrhizobium isolates. Peanut plant root metabolites interact with Bradyrhizobium isolates contributing to initiate nodulation. Our findings demonstrate that tailored intercropping could be used to improve soil nitrogen availability through changes in the rhizosphere microbiome and its functions.</p>
Project description:Intercropping is a sustainable agricultural practice widely used around the world for enhancing resource use efficiency. However, short crops often grow in shade condition underneath the canopy of tall crops. Soybean is one of the most important oil crops and usually is planted in intercropping patterns. However, little is known about the acclimation responses of soybean leaves to shade in intercropping condition at the transcriptome level.
Project description:sugarcane and peanut intercropping
| PRJNA607128 | ENA
Project description:16s amplicon sequencing profiling the rhizobacteria community shift in maize/peanut intercropping
| PRJNA788265 | ENA
Project description:The soil microbial community diversity in a long-term maize/peanut intercropping
| PRJNA934838 | ENA
Project description:Effects of maize-peanut intercropping and root-separated intercropping on soil nutrients, microorganisms and metabolites in crop rhizosphere