Project description:Efficient utilization of lignocellulosic biomass-derived sugars is essential to improve the economics of biorefinery. While Pseudomonas putida is a promising microbial host, its usage is limited because this strain cannot utilize xylose or galactose as a sole carbon source. To address this issue, we heterologously introduced a xylose utilizing gene (xylD) from Caulobacter crescentus and a galactose operon (galETKM) from E. coli MG1655. To improve the utilization further, we evolved the engineered strains in minimal medium conditions. After the evolution, they acquired better fitnesses on the non-native sugars. To understand transcriptional changes after the evolution, the transcriptomes of few evolved isolates were analyzed.
Project description:This dataset contains the gene expression signature in triplicates of Escherichia coli BW25113 growing exponentially on eight different environments: minimal medium supplemented with 5 g/L of Glucose, Galactose, Glycerol, Gluconate, Fructose, Pyruvate, Succinate or Acetate as the sole carbon source.
Project description:E. coli isolates from different CF patients demonstrate increased growth rate when grown with glycerol, a major component of fecal fat, as the sole carbon source compared to E. coli from healthy controls. CF and control E. coli isolates have differential gene expression when grown in minimal media with glycerol as the sole carbon source. While CF isolates display a growth promoting transcriptional profile, control isolates engage stress and stationary phase programs, which likely results in slower growth rates.
Project description:We carried out adaptive laboratory evolution of an E. coli strain lacking four genes (adhE, pta, ldhA, frdA) involved in acetyl-CoA consumption, allowing the efficient utilization of acetate as its sole carbon and energy source. The transcriptomes according to the medium status (M9 aceate, M9 glucose) of the evolved strain (SBA01) and its parent strain (DSM01) were compared using RNA-seq.
Project description:Methanol, being electron-rich and derivable from methane or CO2, is a potentially renewable one-carbon (C1) feedstock for microorganisms. Although the ribulose monophosphate (RuMP) cycle used by methylotrophs to assimilate methanol differs from the typical sugar metabolism by only three enzymes, turning a non-methylotrophic organism to a synthetic methylotroph that grows to a high cell density has been challenging. Here, we reprogrammed E. coli using metabolic robustness criteria followed by laboratory evolution to establish a strain that can utilize methanol as the sole carbon source efficiently. This synthetic methylotroph alleviated a heretofore uncharacterized hurdle, DNA-protein crosslinking (DPC), by insertion sequence (IS) mediated copy number variations (CNV) and balanced the metabolic flux by mutations. Being capable of growing at a rate comparable to natural methylotrophs in a wide-range of methanol concentrations, this synthetic methylotrophic strain illustrates genome editing and evolution for microbial tropism changes, and expands the scope of biological C1 conversion.
Project description:Glycolytic E. coli (E. coli grown on glucose as a sole carbon source) and sulfoglycolytic E. coli (E. coli grown on the sulfosugar sulfoquinovose as a sole carbon source) were grown to mid-log phase in M9 minimal medium. Samples were harvested at mid-log phase and analysed using GC-EI-QqQ-MS.
Project description:Dihydroxyacetone (DHA) is an attractive molecule produced in a wide range of industries . DHA is found among all the kingdoms as an intermediate of various metabolic pathways and can be used as a carbon source by many organisms. The bacterium Escherichia coli is able to grow on DHA as the sole carbon source albeit at a low growth rate (0.1 h-1). If the topology of DHA metabolic network has been characterized, the function and regulation of the metabolic pathways involved in DHA metabolism remain unsolved. Here, we aimed to better understand DHA metabolism in E. coli BW25113 by exploring its transcriptional pattern on DHA versus glucose. We also studied the pattern of three DHA pathway mutants (dhaKLM, ptsA and glpK).
Project description:The increasing demand for non-food competitive carbon sources such as methanol for biotechnology has brought methanol-utilizing bacteria, so-called methylotrophs, to focus. The product spectrum of natural methylotrophs and their genetic accessibility is limited and as an alternative approach, the introduction of methylotrophic metabolism into a biotechnologically well-established organism, such as Escherichia coli, represents a promising concept. By performing long-term evolution over 600 days, we obtained an E. coli strain that is able to grow on methanol as its sole carbon source at rates comparable to natural methylotrophic organisms. We confirmed that the strain forms its entire biomass from methanol. Furthermore, we sequenced the genome of the evolved strain and compared it to the genome of its ancestor. Intriguingly, we found several hundreds of mutations targeting genes of various functions, such as catalysis and regulation. Like the comparison of the genome before and after evolution, the investigation of the proteome would be of high interest. Proteomics would reveal the consequences of the regulatory mutations found in the genome and provide an overall picture of the adaptations by the cell enabling it to grow on methanol. The increasing demand for non-food competitive carbon sources such as methanol for biotechnology has brought methanol-utilizing bacteria, so-called methylotrophs, to focus. The product spectrum of natural methylotrophs and their genetic accessibility is limited and as an alternative approach, the introduction of methylotrophic metabolism into a biotechnologically well-established organism, such as Escherichia coli, represents a promising concept. By performing long-term evolution over 600 days, we obtained an E. coli strain that is able to grow on methanol as its sole carbon source at rates comparable to natural methylotrophic organisms. We confirmed that the strain forms its entire biomass from methanol. Furthermore, we sequenced the genome of the evolved strain and compared it to the genome of its ancestor. Intriguingly, we found several hundreds of mutations targeting genes of various functions, such as catalysis and regulation. Like the comparison of the genome before and after evolution, the investigation of the proteome would be of high interest. Proteomics would reveal the consequences of the regulatory mutations found in the genome and provide an overall picture of the adaptations by the cell enabling it to grow on methanol.