Project description:To accelerate genetic studies in sugarcane, an Axiom Sugarcane100K single nucleotide polymorphism (SNP) array was designed and customized in this study. Target enrichment sequencing 300 sugarcane accessions selected from the world collection of sugarcane and related grass species yielded more than four million SNPs, from which a total of 31,449 single dose (SD) SNPs and 68,648 low dosage (33,277 SD and 35,371 double dose) SNPs from two datasets respectively were selected and tiled on Affymetrix Axiom SNP array. Most of selected SNPs (91.77%) were located within genic regions (12,935 genes), with an average of 7.1 SNPs/gene according to sorghum gene models. This newly developed array was used to genotype 469 sugarcane clones, including one F1 population derived from cross between Green German and IND81-146, one selfing population derived from CP80-1827, and 11 diverse sugarcane accessions as controls. Results of genotyping revealed a high polymorphic SNP rate (77.04%) among the 469 samples. Three linkage maps were constructed by using SD SNP markers, including a genetic map for Green German with 3,482 SD SNP markers spanning 3,336 cM, a map for IND81-146 with 1,513 SD SNP markers spanning 2,615 cM, and a map for CP80-1827 with 536 SD SNP markers spanning 3,651 cM. Quantitative trait loci (QTL) analysis identified a total of 18 QTLs controlling Sugarcane yellow leaf virus resistance segregating in the two mapping populations, harboring 27 disease resistant genes. This study demonstrated the successful development and utilization of a SNP array as an efficient genetic tool for high throughput genotyping in highly polyploid sugarcane.
Project description:In this study, we used the illumina high throughput sequencing approach (Sequencing-By-Synthesis, or SBS) to develop the sequence resource of black pepper. To identify micro RNAs functioning in stress response of the black pepper plant, small RNA libraries were prepared from the leaf and root of Phytophthora capsici infected plants, leaves from drought stressed and control plants.
Project description:Tea plants (Camellia sinensis) present an excellent system to study evolution and diversification of specialized metabolites due to their abundance in classes, numbers and contents. A large number of tea cultivars have been cultivated throughout the world not only because of their adaption to different environments but of selection for specific flavors. The chemical and genetic basis for unique taste and aroma of different tea cultivars remains largely unknown, but is critical for guiding genetic breeding of new cultivars. Using transcriptomic data from 136 representative tea accessions in China, we obtain 925,854 high-quality single-nucleotide polymorphisms (SNPs) useful for marker-assisted breeding. Phylogenetic and population structure analyses separate sampled tea accessions into five major groups. Different major alleles are identified on 1183 SNP sites for the two major types of tea, C. sinensis var. assamica (CSA) and C. sinensis var. sinensis (CSS), reflecting fixation of these alleles after population divergence. Non-targeted metabolomic analyses detect 2,818 and 2,311 metabolic features in tea samples in positive and negative ionization modes, respectively, including 355 and 286 metabolites respectively that are differentially accumulated in different tea groups. Each phylogenetic group contains signature metabolites. In particular, CSA tea accessions are featured with high accumulation of diverse classes of flavonoid compounds, such as flavanols, flavonol mono-/di-glycosides and proanthocyanidin dimers. Comparisons of gene expression profiles of different tea groups identify hundreds of differentially expressed genes with some involved in the biosynthesis of characteristic tea metabolites, reflecting a combinational effect of genetic and environmental factors. Taken together, our study provides new insights into the phylogenetic relationships, molecular markers, metabolite compositions, and gene expression profiles of representative cultivated tea accessions in China, which are beneficial for targeted tea breeding and improvement.
Project description:The experiments were performed to elucidate the enigmatic enzymatic formation of the pungent principle, piperine, from black pepper (Piper nigrum L.), the world´s most popular spice. Based a differential RNA-Seq approach including immature fruits, flowers, and leaves, the gene encoding piperine synthase, encoding a BAHD-type acyltransferase and several other candidate genes encoding various enzymatic functions in the biosynthetic pathway were identified. Recombinant piperine synthase and additional promiscuous piperamide synthases were used to facilitate the microbial production of a broad range of medicinally relevant piperamides. Subsequent investigations will also include the identification of enzymatic steps in the phenylpropanoid pathway and the amino acid derived biosynthesis of piperidine Based on the assumption that piperine encoding genes are highly expressed shortly before the slope of piperine accumulation reaches its maximum, RNA from greenhouse grown black pepper plants was extracted from young fruits at two different stages of development, flowers, and leaves were harvested for a differential RNA-Seq approach. Candidate transcripts associated with piperine biosynthesis were identified by comparative transcript abundance and sequence annotation tools.
Project description:Twelve chili pepper accessions, six domesticated, four wild and two F1 crosses were studied. RNA-Seq experiments were performed with fruits from each accession at 7 different times after anthesis. Additionally, samples of seedlings from two accessions were evaluated. The data set is comprised by 179 samples, that in total have more than 3 billion reads map to the Capsicum annuum genome.
2021-03-16 | GSE165448 | GEO
Project description:SNP matrix of 8,953 pepper (Capsicum spp.) accessions from worldwide genebanks
Project description:In this study, we have evaluated the proteomic changes that occur in Piper nigrum L.(black pepper) after infection by the pathogen Phytophthora capsici. We report novel leaf proteins from black pepper identified by an integrated transcriptome-assisted label-free quantitative proteomics pipeline. Several previously described methods were used to create this data set. Detached leaves were inoculated with either mock treatment, or the oomycete pathogen and small tissue samples only around the site of inoculation were collected for protein sample preparations. In order to quantify protein abundance in the samples being compared, we used a label free method of spiking samples with a known ratio of pre-digested peptide samples to normalize endogenous protein abundance in the MS detection. Our study attempts to explain the basal immune components of black pepper when challenged with P. capsici.
Project description:To facilitate the functional annotation of the pepper genome, we generated 90.84 Gb of RNA-Seq data from 33 libraries representing all major tissue types and developmental stages of Zunla 1, as well as fruits from other accessions with significant phenotypic differences.
2014-03-14 | GSE45037 | GEO
Project description:Elucidating the population structure and diversity of publicly available pepper accessions