Project description:Eucalyptus urophylla is a commercially important wood crop plantation species due to its rapid growth, biomass yield, and use as bioenergy feedstock. We characterized the genetic diversity and population structure of 332 E. urophylla individuals from 19 geographically defined E. urophylla populations with a reliability of 14,468 single nucleotide polymorphisms (SNPs). We compared the patterns of genetic variation among these 19 populations. High levels of genetic diversity were observed throughout the 19 E. urophylla populations based on genome-wide SNP data (HE=0.2677 to 0.3487). Analysis with STRUCTURE software, Principal component analysis (PCA) and a neighbor-joining (NJ) tree indicated that E. urophylla populations could be divided into three groups, and moderate and weak population structure was observed with pairwise genetic differentiation (FST) values ranging from −0.09 to 0.074. The low genetic diversity and shallow genetic differentiation found within the 19 populations may be a consequence of their pollination system and seed dispersal mechanism. In addition, 55 core germplasms of E. urophylla were constructed according to the genetic marker data. The genome-wide SNPs we identified will provide a valuable resource for further genetic improvement and effective use of the germplasm resources.
2023-01-31 | GSE145072 | GEO
Project description:Genetic Diversity and Population Structure of eddoe Taro in China Using Genome-wide SNP Markers
Project description:Genetic diversity and population structure of cultivated Dendrobium huoshanense using SNP markers generated from GBS analysis
| PRJNA659117 | ENA
Project description:Single nucleotide polymorphism (SNP) markers for genetic diversity and population structure study in Brazilian Maize (Zea mays L.) germplasm
| PRJEB72805 | ENA
Project description:Single nucleotide polymorphism (SNP) markers for genetic diversity and population structure study in Ethiopian barley (Hordeum vulgare L.) germplasm
| PRJEB59022 | ENA
Project description:Genetic diversity, population structure, and DNA fingerprinting of Ailanthus altissima var. erythrocarpa based on EST-SSR markers
Project description:The identification of surrogate single nucleotide polymorphism (SNP) markers that can predict responses to preoperative chemoradiotherapy (CRT) in rectal cancer patients. Genome-wide association studies in clinical populations are theoretically capable of identifying markers that are capable of tumor regression after CRT. We used Affymetrix’s SNP Array 6.0 to detail genetic polymorphism of patient’s group showing differential responsiveness to preoperative CRT and profiled SNP biomarkers.
Project description:The identification of surrogate single nucleotide polymorphism (SNP) markers that can predict responses to chemotherapy could enable the efficient selection of patients for various regimens. Genome-wide association studies in clinical populations are theoretically capable of identifying markers that are capable of influencing drug responses. We used Affymetrix’s SNP Array 6.0 to detail genetic polymorphism of patient’s group showing differential responsiveness to various regimens and profiled SNP biomarkers for various regimens.
Project description:To accelerate genetic studies in sugarcane, an Axiom Sugarcane100K single nucleotide polymorphism (SNP) array was designed and customized in this study. Target enrichment sequencing 300 sugarcane accessions selected from the world collection of sugarcane and related grass species yielded more than four million SNPs, from which a total of 31,449 single dose (SD) SNPs and 68,648 low dosage (33,277 SD and 35,371 double dose) SNPs from two datasets respectively were selected and tiled on Affymetrix Axiom SNP array. Most of selected SNPs (91.77%) were located within genic regions (12,935 genes), with an average of 7.1 SNPs/gene according to sorghum gene models. This newly developed array was used to genotype 469 sugarcane clones, including one F1 population derived from cross between Green German and IND81-146, one selfing population derived from CP80-1827, and 11 diverse sugarcane accessions as controls. Results of genotyping revealed a high polymorphic SNP rate (77.04%) among the 469 samples. Three linkage maps were constructed by using SD SNP markers, including a genetic map for Green German with 3,482 SD SNP markers spanning 3,336 cM, a map for IND81-146 with 1,513 SD SNP markers spanning 2,615 cM, and a map for CP80-1827 with 536 SD SNP markers spanning 3,651 cM. Quantitative trait loci (QTL) analysis identified a total of 18 QTLs controlling Sugarcane yellow leaf virus resistance segregating in the two mapping populations, harboring 27 disease resistant genes. This study demonstrated the successful development and utilization of a SNP array as an efficient genetic tool for high throughput genotyping in highly polyploid sugarcane.