Project description:Pluripotency, the capacity of embryo-derived stem cells to generate all tissues in the organism, can be induced in somatic cells by nuclear transfer into oocyte, fusion with embryonic stem cells, and for male germ cells by cell culture alone. Recently, murine fibroblasts have been reprogrammed directly to pluripotency by ectopic expression of four transcription factors (Oct4, Sox2, Klf4, and Myc) to yield induced Pluripotent Stem (iPS) cells. Using the same four factors, we have derived iPS cells from human embryonic stem cell-derived fibroblasts, primary human fetal cells, and diverse cells of neonatal and adult human origin. The human iPS cells manifest the colony morphology, gene expression patterns, and epigenetic characteristics of human Embryonic Stem (hES) cells, and form well-differentiated teratomas in immune-deficient mice. These data demonstrate that defined factors can reprogram human cells to pluripotency, and establish a method whereby patient-specific cells might be established in culture. Biological replicates:; GSM248201 and GSM248202; GSM248205 and GSM248206; GSM248207 and GSM248208; GSM248209 and GSM248210; GSM248211 and GSM248212; GSM248213 and GSM248214. Sample descriptions:; H1-OGN: ES cells expressing GFP-NEO marker under OCT4 promoter; dH1f: differentiated H1-OGN fibroblasts; dHcf16: differentiated H1-OGN cloned fibroblasts; MRC5: fetal lung fibroblasts; BJ1: neonatal fibroblasts Experiment Overall Design: RNA samples from hES cells, differentiated hES cells, human fibroblasts, iPS cells from differentiated hES cells, and iPS cells from human fibroblasts. Gene expression of those cells were analyzed.
Project description:In this study, we explored x-inactivation in monkey embryos (ICM and TE separately) and pluripotent stem cells (IVF derived ES, SCNT-derived ES and monkey iPS) To elucidate x-inactivation in experimentally reprogrammed pluripotent cells, we derived pluripotent stem cells by both SCNT and iPS approaches from same parental skin fibroblasts. We also compared gene patterns of those cells to IVF-derived counterpart. The transcriptomes of rhesus monkey embryonic stem cell lines derived by both SCNT (CRES) and iPS (RiPS) from same monkey skin fibroblasts were compared each other. Both experimentally reprogrammed cells were also compared with IVF-derived counterpart (ORMES23). Finally, the adult somatic skin fibroblasts were analyzed. Three biological replicates of each cell line (A, B, C) were analyzed.
Project description:Transcriptional profiling of human iPS-HSCs overexpressing LHX2 compared with control iPS-HSCs, which were cocultured with human induced pluripotent stem cell-derived hepatic progenitor cells (iPS-HPCs).
Project description:In this study, we explored x-inactivation in monkey embryos (ICM and TE separately) and pluripotent stem cells (IVF derived ES, SCNT-derived ES and monkey iPS) To elucidate x-inactivation in experimentally reprogrammed pluripotent cells, we derived pluripotent stem cells by both SCNT and iPS approaches from same parental skin fibroblasts. We also compared gene patterns of those cells to IVF-derived counterpart.
Project description:The Human Induced Pluripotent Stem Cells Initiative (HipSci) project brings together diverse constituents in genomics, proteomics, cell biology and clinical genetics to create a UK national induced pluripotent stem cell (iPS cell) resource and use it to carry out cellular genetic studies. In this sub-study we performed Expression analysis using the Illumina HumanHT -12 Expression BeadChip on fibroblasts and iPS cells generated from skin biopsies from healthy volunteers.
Project description:Pluripotency, the capacity of embryo-derived stem cells to generate all tissues in the organism, can be induced in somatic cells by nuclear transfer into oocyte, fusion with embryonic stem cells, and for male germ cells by cell culture alone. Recently, murine fibroblasts have been reprogrammed directly to pluripotency by ectopic expression of four transcription factors (Oct4, Sox2, Klf4, and Myc) to yield induced Pluripotent Stem (iPS) cells. Using the same four factors, we have derived iPS cells from human embryonic stem cell-derived fibroblasts, primary human fetal cells, and diverse cells of neonatal and adult human origin. The human iPS cells manifest the colony morphology, gene expression patterns, and epigenetic characteristics of human Embryonic Stem (hES) cells, and form well-differentiated teratomas in immune-deficient mice. These data demonstrate that defined factors can reprogram human cells to pluripotency, and establish a method whereby patient-specific cells might be established in culture. Biological replicates: GSM248201 and GSM248202; GSM248205 and GSM248206; GSM248207 and GSM248208; GSM248209 and GSM248210; GSM248211 and GSM248212; GSM248213 and GSM248214. Sample descriptions: H1-OGN: ES cells expressing GFP-NEO marker under OCT4 promoter dH1f: differentiated H1-OGN fibroblasts dHcf16: differentiated H1-OGN cloned fibroblasts MRC5: fetal lung fibroblasts BJ1: neonatal fibroblasts Keywords: cellular reprogramming
Project description:This experiment was designed to show the similarity among normal human epidermal melanocytes, melanocytes derived from human 3F-induced pluripotent stem (iPS) cells, and human 3F-iPS cells.
Project description:The Human Induced Pluripotent Stem Cells Initiative (HipSci) project brings together diverse constituents in genomics, proteomics, cell biology and clinical genetics to create a UK national induced pluripotent stem cell (iPS cell) resource and use it to carry out cellular genetic studies. In this sub-study we performed Expression analysis using the using RNAseq of fibroblasts, peripheral blood mononuclear cells (PBMCs) and induced pluripotent stem cells (iPS cells) generated from the skin biopsies or blood of healthy volunteers. This experiment includes the data and expands the metadata from two obsolete ArrayExpress accessions (E-ERAD-216 and E-ERAD-327) for use in the Expression Atlas. For samples derived from E-ERAD-216 the raw data is stored in the European Genome-Phenome Archive (EGA) and is subject to access control. Data from E-ERAD-327 is stored in the European Nucleotide Archive (ENA) and is publicly available.
Project description:Human induced pluripotent stem (iPS) cells derived from somatic cells of patients hold great promise for modelling human diseases. Dermal fibroblasts are frequently used for reprogramming, but require an invasive skin biopsy and a prolonged period of expansion in cell culture prior to use. Here, we report the derivation of iPS cells from multiple human blood sources including peripheral blood mononuclear cells (PBMCs) harvested by routine venipuncture. Peripheral blood-derived human iPS lines are comparable to human embryonic stem (ES) cells with respect to morphology, expression of surface antigens, activation of endogenous pluripotency genes, DNA methylation and differentiation potential. Analysis of Immunoglobulin and T-cell receptor gene rearrangement revealed that some of the PBMC iPS cells were derived from T-cells, documenting derivation of iPS cells from terminally differentiated cell types. Importantly, peripheral blood cells can be isolated with minimal risk to the donor and can be obtained in sufficient numbers to enable reprogramming without the need for prolonged expansion in culture. Reprogramming from blood cells thus represents a fast, safe and efficient way of generating patient-specific iPS cells.