Project description:Deep RNA sequceing was performed to explore the expression level of miRNAs in HeLa cell exosomes after treatment with or without 10 ng/ml TGF-β1 for 24 h. The results showed that 48 miRNAs were enriched in exosomes of HeLa cells after treated with TGF-β1 compared with non-treated cells (negative control), proving that TGF-β1 affects HeLa cell exosomes miRNA profile.
Project description:Comparison of probe-target dissociations of probe Eub338 and Gam42a with native RNA of P. putida, in vitro transcribed 16s rRNA of P. putida, in vitro transcribed 16S rRNA of a 2,4,6-trinitrotoluene contaminated soil and an uncontaminated soil sample. Functional ANOVA revealed no significant differences in the dissociation curves of probe Eub338 when hybridised to the different samples. On the opposite, the dissociation curve of probe Gam42a with native RNA of P. putida was significantly different than the dissociation curves obtained with in vitro transcribed 16S rRNA samples. Keywords: Microbial diversity, thermal dissociation analysis, CodeLink microarray
Project description:Mitochondrial rRNAs play important roles in regulating mtDNA-encoded gene expression and energy metabolism subsequently. However, the proteins that regulate mitochondrial 16S rRNA processing remain poorly understood. Herein, we generated adipose-specific Wbscr16-/- mice and cells, both of which exhibited dramatic mitochondrial changes. Subsequently, WBSCR16 was identified as a 16S rRNA-binding protein essential for the cleavage of 16S rRNA-mt-tRNALeu, facilitating 16S rRNA processing and mitochondrial ribosome assembly. Additionally, WBSCR16 recruited RNase P subunit MRPP3 to nascent 16S rRNA and assisted in this specific cleavage. Furthermore, evidence showed that adipose-specific Wbscr16 ablation promotes energy wasting via lipid preference in brown adipose tissue, leading to excess energy expenditure and resistance to obesity. In contrast, overexpression of WBSCR16 upregulated 16S rRNA processing and induced a preference for glucose utilization in both transgenic mouse models and cultured cells. These findings suggest that WBSCR16 plays essential roles in mitochondrial 16S rRNA processing in mammals, and is the key mitochondrial protein to balance glucose and lipid metabolism.
Project description:Analysis of COVID-19 hospitalized patients, with different kind of symptoms, by human rectal swabs collection and 16S sequencing approach.
Project description:Primary outcome(s): 1. Evaluation of genome abnormality and gene expression by omics analysis of tumor etc. 2. TCR repertoire analysis and RNA expression analysis etc. of T cells in tumor tissue and peripheral blood. 3. Prediction and identification of tumor neo-antigen and evaluation of immunogenicity etc. 4. Analyze ctDNA(16S rRNA PCR) and feces of patients with advanced solid malignancies over time to profile and monitor cancer-related genomic alterations 5. Assessment of the relationship between the analysis above and clinical pathological features or therapeutic efficacy etc.