Project description:Since their introduction, epigenetic clocks have been extensively used in aging and human disease research. In this study, we reveal an intriguing pattern: epigenetic age predictions display a 24-hour periodicity. These paradoxical age oscillations can be attributed to variations in blood cell type composition and epigenomes, both of which demonstrate circadian rhythmicity. This discovery emphasizes the significance of factoring-in the time of day to obtain accurate estimates of epigenetic age.
Project description:Since their introduction, epigenetic clocks have been extensively used in aging and human disease research. In this study, we reveal an intriguing pattern: epigenetic age predictions display a 24-hour periodicity. These paradoxical age oscillations can be attributed to variations in blood cell type composition and epigenomes, both of which demonstrate circadian rhythmicity. This discovery emphasizes the significance of factoring-in the time of day to obtain accurate estimates of epigenetic age.
Project description:Since their introduction, epigenetic clocks have been extensively used in aging and human disease research. In this study, we reveal an intriguing pattern: epigenetic age predictions display a 24-hour periodicity. These paradoxical age oscillations can be attributed to variations in blood cell type composition and epigenomes, both of which demonstrate circadian rhythmicity. This discovery emphasizes the significance of factoring-in the time of day to obtain accurate estimates of epigenetic age.
Project description:The study objective was to determine differentially expressed mRNA transcripts in skeletal muscle from fetal sheep and 30 day old lambs to determine persistent gene changes following placental insufficiency-induced intrauterine growth restriction.