Project description:Penicillium chrysogenum was successfully engineered to produce a novel carbamoylated cephalosporin that can be used as a synthon for semi-synthetic cephalosporins. To this end, structural genes for Acremonium chrysogenum expandase/hydroxylase and Streptomyces clavuligerus carbamoyltransferase were expressed in a penicillinG high-producing strain of P. chrysogenum. Growth of the engineered strain in the presence of the side-chain precursor adipic acid resulted in production of adipoyl-7-amino-3-carbamoyloxymethyl-3-cephem-4-carboxylic acid (ad7-ACCCA) and of several adipoylated pathway intermediates. A combinatorial chemostat-based transcriptome study, in which the ad7-ACCCA- producing strain and a strain lacking key genes in β-lactam synthesis were grown in the presence and absence of adipic acid, enabled the dissection of transcriptional responses to adipic acid per se and to ad7-ACCCA production. In chemostat cultures of both strains, adipic acid served as an additional carbon source. Transcriptome analysis supported an earlier proposal, based on 13C-labelling studies, that adipic acid catabolism in P. chrysogenum occurs via β-oxidation and enabled the identification of putative genes for enzymes involved in mitochondrial and peroxisomal β-oxidation pathways. Several of the genes that showed a specifically altered transcript level in ad7-ACCCA-producing cultures were previously implicated in oxidative stress responses. As strain improvement programmes lead to increased specific productivity and yields, a deeper understanding of these stress responses is likely to be important to also achieve high ad7-ACCCA titers with engineered strains of P. chrysogenum.
Project description:Targeting an engineered DNA fragment to a specific site in chromosomes in order to disrupt, overexpress or modify the nucleotide sequence of a gene requires homologous recombination repair mechanism. This DNA repair mechanism is not predominant in fungi, resulting in extremely low targeting efficiency. To increase this efficiency, it is becoming common practice to disable the non homologous end joining (NHEJ) pathway that causes random integration, by deleting homologous gene to human KU70 and KU80 which encode proteins functioning in the NHEJ pathway. These genes have been successfully deleted in several organisms, including the yeast Kluyveromyces lactis and the fungi Neurospora Crassa and several Aspergilli species. In this study we investigated the behavior of high penicillinG-producing Penicillium chrysogenum strains, in which the KU70 or KU80 homologues, HdfA or HdfB, had been deleted. Targeting efficiency in these mutant strains was significantly increased relative to the reference strain. Both physiological and transcriptome data of chemostat cultivations of the hdfA deletion strain and the reference strain showed minimal differences. However, in a direct competition experiment to assess global strain fitness, the reference strain had a clear advantage over the deletion strain. The full characterization of these recombinant host strains is an essential step to guide the future construction of a whole genome knock-out mutant collection.
Project description:The recent discovery of a velvet complex containing several regulators of secondary metabolism in the model fungus Aspergillus nidulans raises the question whether similar type complexes direct fungal development in genera other than Aspergillus. Penicillium chrysogenum is the industrial producer of the antibiotic penicillin, whose biosynthetic regulation is barely understood. Here we provide a functional analysis of two major homologues of the velvet complex in P. chrysogenum, that we have named PcvelA and PclaeA. Data from array analysis using a ΔPcvelA deletion strain indicate a significant role of PcvelA on the expression of biosynthesis and developmental genes, including PclaeA. Northern hybridization and HPLC quantifications of penicillin titres clearly show that both PcvelA and PclaeA play a major role in penicillin biosynthesis. Both regulators are further involved in different and distinct developmental processes. While PcvelA deletion leads to light independent conidial formation, dichotomous branching of hyphae and pellet formation in shaking cultures, a ΔPclaeA strain shows a severe impairment in conidiophore formation in both the light and dark. Bimolecular fluorescence complementation assays finally provide evidence for a velvet-like complex in Penicillium chrysogenum, with structurally conserved components that have distinct developmental roles, illustrating the functional plasticity of these regulators within filamentous ascomycetes.
Project description:The recent discovery of a velvet complex containing several regulators of secondary metabolism in the model fungus Aspergillus nidulans raises the question whether similar type complexes direct fungal development in genera other than Aspergillus. Penicillium chrysogenum is the industrial producer of the antibiotic penicillin, whose biosynthetic regulation is barely understood. Here we provide a functional analysis of two major homologues of the velvet complex in P. chrysogenum, that we have named PcvelA and PclaeA. Data from array analysis using a ?PcvelA deletion strain indicate a significant role of PcvelA on the expression of biosynthesis and developmental genes, including PclaeA. Northern hybridization and HPLC quantifications of penicillin titres clearly show that both PcvelA and PclaeA play a major role in penicillin biosynthesis. Both regulators are further involved in different and distinct developmental processes. While PcvelA deletion leads to light independent conidial formation, dichotomous branching of hyphae and pellet formation in shaking cultures, a ?PclaeA strain shows a severe impairment in conidiophore formation in both the light and dark. Bimolecular fluorescence complementation assays finally provide evidence for a velvet-like complex in Penicillium chrysogenum, with structurally conserved components that have distinct developmental roles, illustrating the functional plasticity of these regulators within filamentous ascomycetes. Transcriptomes of PcvelA- and PclaeA- deletion mutants were compared with expression data from recipient strain deltaPcku70 and reference strain P2niaD18 as a control
Project description:Impact of Velvet complex on transcriptome and penicillin G production in glucose-limited chemostat cultures of a beta-lactam high-producing Penicillium chrysogenum strain
Project description:In microbial production of non-catabolic products, a loss of production capacity upon long-term cultivation (for example, chemostat), a phenomenon called strain degeneration, is nearly always observed. In this study, a systems biology approach (monitoring changes from gene to produced flux) was used to study degeneration of penicillin production by Penicillium chrysogenum in ethanol-limited chemostat fermentations where the biomass specific penicillin production rate decreased 10-fold within 30 generations. Results showed that the copy number of penicillin gene clusters and expression levels of central metabolism showed little decrease. With respect to penicillin production, major changes were observed: a strong downregulation of the cysteine pathway in agreement with its nearly 10-fold flux reduction. Also, levels of ACVS and IPNS, two penicillin pathway enzymes, and the penicillin transport capacity decreased many fold. This indicates that degeneration is caused by changed regulation of post-translational modifications or an increased protein degradation rate of these proteins. Continued subcultivation of a degenerated culture resulted in partial recovery of the biomass specific penicillin production rate, however, it was still 5-fold lower than the peak biomass specific penicillin production rate.
Project description:In filamentous fungi, secondary metabolism is often linked with developmental processes such as conidiation. In this study we analyzed the link between secondary metabolism and conidiation in the main industrial producer of the β-lactam antibiotic penicillin, the ascomycete Penicillium chrysogenum. Therefore, we generated mutants defective in two central regulators of conidiation, the transcription factors BrlA and StuA, respectively. Inactivation of both BrlA and StuA blocked conidiation and altered hyphal morphology during growth on solid media, as shown by light and scanning electron microscopy, but did not affect biomass production during liquid submerged growth. Genome-wide transcriptional profiling identified a complex StuA- and BrlA-dependent regulatory network, including genes previously shown to be involved in development and secondary metabolism. Remarkably, inactivation of StuA, but not BrlA, drastically down-regulated expression of the penicillin biosynthetic gene cluster during solid and liquid submerged growth. In agreement, penicillin V production was wild type-like in BrlA-deficient strains but 99 % decreased in StuA-deficient strains during liquid submerged growth as shown by HPLC analysis. Thus, among identified regulators of penicillin V production StuA has the most severe influence. Over-expression of StuA increased the transcript levels of BrlA and AbaA (another developmental regulator), de-repressed conidiation during liquid submerged growth, but did not affect penicillin V productivity. Taken together, these data demonstrate an intimate but not exclusive link between regulation of development and secondary metabolism in P. chrysogenum. Transcriptomes of PcbrlA- and PcstuA- deletion mutants were compared with expression data from recipient strain deltaPcku70 as a control Mycelia from the transformants and the reference strain were harvested at successive stages of development for RNA extraction and hybridization on Affymetrix microarrays.