Project description:The mammalian SWI/SNF, or BAF complex, has a conserved and direct role in antagonizing polycomb-mediated repression. Yet, BAF also promotes repression by polycomb in stem cells and cancer. How BAF both antagonizes and promotes polycomb-mediated repression remains unknown. Here, we utilize targeted protein degradation to dissect the BAF-polycomb axis in embryonic stem cells on short timescales. We report that rapid BAF depletion redistributes PRC1 and PRC2 complexes from highly occupied domains, like Hox clusters, to weakly occupied sites normally opposed by BAF. Polycomb redistribution from highly repressed domains results in their decompaction, gain of active epigenomic features, and transcriptional derepression. Surprisingly, through dose-dependent degradation of PRC1 & PRC2 we identify a conventional role for BAF in polycomb-mediated repression, in addition to global polycomb redistribution. These findings provide new mechanistic insight into the highly dynamic state of the Polycomb-Trithorax axis.
Project description:The mammalian SWI/SNF, or BAF complex, has a conserved and direct role in antagonizing polycomb-mediated repression. Yet, BAF also promotes repression by polycomb in stem cells and cancer. How BAF both antagonizes and promotes polycomb-mediated repression remains unknown. Here, we utilize targeted protein degradation to dissect the BAF-polycomb axis in embryonic stem cells on short timescales. We report that rapid BAF depletion redistributes PRC1 and PRC2 complexes from highly occupied domains, like Hox clusters, to weakly occupied sites normally opposed by BAF. Polycomb redistribution from highly repressed domains results in their decompaction, gain of active epigenomic features, and transcriptional derepression. Surprisingly, through dose-dependent degradation of PRC1 & PRC2 we identify a conventional role for BAF in polycomb-mediated repression, in addition to global polycomb redistribution. These findings provide new mechanistic insight into the highly dynamic state of the Polycomb-Trithorax axis.
Project description:Background: 5-hydroxymethylcytosine (5-hmC) is a recently discovered epigenetic modification that is altered in cancers. Genome wide assays for 5-hmC determination are needed as many of the techniques commonly used to assay 5-methylcytosine (5-mC), including conventional methyl-sensitive restriction digest and bisulfite sequencing, are incapable of distinguishing between 5-mC and 5-hmC. Results: Glycosylation of 5-hmC residues by beta-Glucosyl Transferase (beta-GT) can make CCGG residues insensitive to digestion by MspI. We used this premise to modify the HELP-tagging assay to identify both 5-mC and 5-hmC loci in the genome. Comparison of sequencing libraries after HpaII, MspI and MspI+ beta-GT conversion resulted in locus specific 5-mC and 5-hmC determination. A custom bioinformatics pipeline was created to identify 5-hmC sites that were validated at global level by LS-MS and the locus specific level by qRT-PCR of 5-hmC pulldown DNA. Hydroxymethylation at both promoter and intragenic locations correlated positively with gene expression. Analysis of pancreatic cancer samples revealed striking redistribution of 5-hmC sites in cancer cells and demonstrated enrichment of this modification at many oncogenic promoters such as GATA6. Conclusions: The HELP-GT assay allows a high resolution, simultaneous determination of 5-hmC and 5-mC loci from small amounts of DNA with the utilisation of modest sequencing resources. Redistribution of 5-hmC seen in cancer highlights the importance of examining this modification in conjugation with conventional methylome analysis. We did methylation and hydroxymethylation tests for one control and two pancreatic cancer cases
Project description:Methyltransferase-like 3 (METTL3) and 14 (METTL14) are core subunits of the methyltransferase complex (MTC) that catalyzes mRNA N6-methyladenosine (m6A) modification. Despite the expanding list of m6A-dependent function of the MTC, m6A independent function of the METTL3 and METTL14 complex remains poorly understood. Here we show that genome-wide redistribution of METTL3 and METTL14 drives senescence-associated secretory phenotype (SASP) in a m6A-independent manner. METTL3 and METTL14 are necessary for SASP. However, SASP is not regulated by m6A mRNA modification. METTL14 is redistributed to the enhancers, while METTL3 is localized to the pre-existing NF-B sites within the promoters of the SASP genes during senescence. METTL3 interacts with NF-B and they are mutually dependent on their associations with the promoters of SASP genes. METTL14 but not METTL3 is necessary for function of SASP gene enhancers. METTL3 and METTL14 are required for both the tumor-promoting and immune surveillance functions of senescent cells mediated by SASP in vivo in mouse models. In summary, our results report a m6A independent function of the METTL3 and METTL14 complex in promoting SASP through regulating transcription by genome-wide redistribution of METTL14 to enhancers and METTL3 to promoters of SASP genes during senescence.
Project description:We have analyzed the genome-wide redistribution of RNA polymerase in E.coli upon methylglyoxal stress. Herefore, we have used ChIP-chip against the beta subunit of RNA polymerase and we have assessed changes in RNA polymerase distribution upon sub-lethal and lethal concentrations of methylglyoxal.
Project description:Methyltransferase-like 3 (METTL3) and 14 (METTL14) are core subunits of the methyltransferase complex (MTC) that catalyzes mRNA N6-methyladenosine (m6A) modification. Despite the expanding list of m6A-dependent function of the MTC, m6A independent function of the METTL3 and METTL14 complex remains poorly understood. Here we show that genome-wide redistribution of METTL3 and METTL14 drives senescence-associated secretory phenotype (SASP) in a m6A-independent manner. METTL3 and METTL14 are necessary for SASP. However, SASP is not regulated by m6A mRNA modification. METTL14 is redistributed to the enhancers, while METTL3 is localized to the pre-existing NF-B sites within the promoters of the SASP genes during senescence. METTL3 interacts with NF-B and they are mutually dependent on their associations with the promoters of SASP genes. METTL14 but not METTL3 is necessary for function of SASP gene enhancers. METTL3 and METTL14 are required for both the tumor-promoting and immune surveillance functions of senescent cells mediated by SASP in vivo in mouse models. In summary, our results report a m6A independent function of the METTL3 and METTL14 complex in promoting SASP through regulating transcription by genome-wide redistribution of METTL14 to enhancers and METTL3 to promoters of SASP genes during senescence.
Project description:Methyltransferase-like 3 (METTL3) and 14 (METTL14) are core subunits of the methyltransferase complex (MTC) that catalyzes mRNA N6-methyladenosine (m6A) modification. Despite the expanding list of m6A-dependent function of the MTC, m6A independent function of the METTL3 and METTL14 complex remains poorly understood. Here we show that genome-wide redistribution of METTL3 and METTL14 drives senescence-associated secretory phenotype (SASP) in a m6A-independent manner. METTL3 and METTL14 are necessary for SASP. However, SASP is not regulated by m6A mRNA modification. METTL14 is redistributed to the enhancers, while METTL3 is localized to the pre-existing NF-B sites within the promoters of the SASP genes during senescence. METTL3 interacts with NF-B and they are mutually dependent on their associations with the promoters of SASP genes. METTL14 but not METTL3 is necessary for function of SASP gene enhancers. METTL3 and METTL14 are required for both the tumor-promoting and immune surveillance functions of senescent cells mediated by SASP in vivo in mouse models. In summary, our results report a m6A independent function of the METTL3 and METTL14 complex in promoting SASP through regulating transcription by genome-wide redistribution of METTL14 to enhancers and METTL3 to promoters of SASP genes during senescence.