Project description:Ulcerative colitis is a chronic inflammatory disorder for which a definitive cure is still missing. This is characterized by an overwhelming inflammatory milieu in the colonic tract where a composite set of immune and non-immune cells orchestrate its pathogenesis. Over the last years, a growing body of evidence has been pinpointing gut virome dysbiosis as underlying its progression. Nonetheless, its role during the early phases of chronic inflammation is far from being fully defined. Here we show the gut virome-associated Hepatitis B virus protein X, most likely acquired after an event of zoonotic spillover, to be associated with the early stages of ulcerative colitis and to induce colonic inflammation in mice. It acts as a transcriptional regulator in epithelial cells, provoking barrier leakage and altering mucosal immunity at the level of both innate and adaptive immunity. This study paves the way to the comprehension of the aetiopathogenesis of intestinal inflammation and encourages further investigations of the virome as a trigger also in other scenarios. Moreover, it provides a brand-new standpoint that looks at the virome as a target for tailored treatments, blocking the early phases of chronic inflammation and possibly leading to better disease management.
2023-02-20 | GSE204665 | GEO
Project description:MOTS DNA Virome Masters Project
| PRJNA1013488 | ENA
Project description:Buffalo tonsil DNA virome sequencing
Project description:Despite considerable speculation for the role of cytosine (DNA) methylation in biological and molecular processes in insects, direct functional tests are lacking. Here we provide evidence for the functional role of the maintenance DNA methyltransferase 1 (Dnmt1) in an insect using experimental manipulation. Through RNA interference (RNAi) we successfully post-transcriptionally knocked down Dnmt1 in ovarian tissue of the hemipteran Oncopeltus fasciatus (the large milkweed bug). Individuals depleted for dnmt1, and subsequently DNA methylation, failed to reproduce. Manipulating the levels of DNA methylation did not result in changes in overall gene expression. Furthermore, reductions in levels of DNA methylation at transposable elements (TEs) did not lead to large-scale reactivation of TE transcription. Despite the lack of a causal relationship between reduced DNA methylation and gene expression in the tissue we surveyed, eggs were inviable revealing an important function of DNA methylation in O. fasciatus. Our work provides direct experimental evidence for a functional role of Dnmt1 and DNA methylation in insects and presents O. fasciatus as a tractable model for further exploration of the function of DNA methylation in other tissues and life history circumstances for insects.
Project description:DNA methylation is an important chromatin modification that is necessary for the structural integrity and proper regulation of the genome for many species. Despite its conservation across the tree of life, little is known about its contribution to complex traits. Reports that differences in DNA methylation between castes in closely related Hymenopteran insects (ants, bees and wasps) contributes to social behaviors has generated hypotheses on the role of DNA methylation in governing social behavior. However, social behavior has evolved multiple times across insecta, and a common role of DNA methylation in social behavior remains outstanding. Using phylogenetic comparative methods we sought to better understand patterns of DNA methylation and social behavior across insects. DNA methylation can be found in social and solitary insects from all orders, except Diptera (flies), which suggests a shared loss of DNA methylation within this order. The lack of DNA methylation is reflected in the absence of the maintenance and de novo DNA methyltransferases (DNMT) 1 and 3, respectively. Interestingly, DNA methylation is found in species without DNMT3. DNA methylation and social behavior (social/solitary) or with division of labor (caste+/caste–) for 123 insect species analyzed from 11 orders are not evolutionary dependent, which is further supported by sequencing of DNA methylomes from 40 species.
Project description:This study aims to explore the relationship between the respiratory virome, specifically bacteriophages, HERV and the host response in ARDS and to assess their value in predicting the prognosis of ARDS.
2024-10-13 | GSE279069 | GEO
Project description:Analysis of DNA virome of cucurbitaceae and solanaceae plants in Italy