Project description:Ulcerative colitis is a chronic inflammatory disorder for which a definitive cure is still missing. This is characterized by an overwhelming inflammatory milieu in the colonic tract where a composite set of immune and non-immune cells orchestrate its pathogenesis. Over the last years, a growing body of evidence has been pinpointing gut virome dysbiosis as underlying its progression. Nonetheless, its role during the early phases of chronic inflammation is far from being fully defined. Here we show the gut virome-associated Hepatitis B virus protein X, most likely acquired after an event of zoonotic spillover, to be associated with the early stages of ulcerative colitis and to induce colonic inflammation in mice. It acts as a transcriptional regulator in epithelial cells, provoking barrier leakage and altering mucosal immunity at the level of both innate and adaptive immunity. This study paves the way to the comprehension of the aetiopathogenesis of intestinal inflammation and encourages further investigations of the virome as a trigger also in other scenarios. Moreover, it provides a brand-new standpoint that looks at the virome as a target for tailored treatments, blocking the early phases of chronic inflammation and possibly leading to better disease management.
Project description:The specific binding of transcription factors to cognate sequence elements is thought to be critical for the generation of specific gene expression programs. The transcription factors nuclear factor kB (NF-kB) and the interferon (IFN) regulatory factors (IRFs) bind to the kB site and the interferon response element (IRE), respectively, of target genes, and they are activated in macrophages after exposure to pathogens. However, how these factors produce pathogen-specific inflammatory and immune responses remains poorly understood. Combining top-down and bottom-up systems biology approaches, we have identified the NF-kB p50 homodimer (p50:p50) as a regulator of IRF responses. First, unbiased genome-wide expression analysis revealed that p50 repressed a subset of IFN-inducible genes through a previously uncharacterized subclass of guanine-rich IRE (G-IRE) sequences, which was substantiated by biochemical and structural analyses. Second, mathematical modeling predicted that p50:p50 might enforce the stimulus-specificity of composite promoters. Indeed, the production of the antiviral regulator IFN-b was rendered stimulus-specific by the binding of p50:p50 to the G-IRE–containing IFNb enhancer to suppress cytotoxic IFN signaling. Specifically, a deficiency in p50 resulted in the inappropriate production of IFN-b in response to bacterial DNA sensed by Toll-like receptor 9. This role for NF-kB p50 in enforcing the specificity of the cellular response to pathogens by binding to a previously uncharacterized subset of IRE sequences alters our understanding of how the NF-kB and IRF signaling systems cooperate to regulate antimicrobial immunity. [BMDM]: Total RNA extracted from wt, p50-/- or ifnar-/- bone marrow derived macrophages (BMDMs) were subjected to stimulation with LPS, CpG or IFNb [MEF]: Total RNA extracted from wt or p50KO primary mouse embryonic fibroblasts were subjected to stimulation with LPS or IFNb
Project description:The specific binding of transcription factors to cognate sequence elements is thought to be critical for the generation of specific gene expression programs. The transcription factors nuclear factor kB (NF-kB) and the interferon (IFN) regulatory factors (IRFs) bind to the kB site and the interferon response element (IRE), respectively, of target genes, and they are activated in macrophages after exposure to pathogens. However, how these factors produce pathogen-specific inflammatory and immune responses remains poorly understood. Combining top-down and bottom-up systems biology approaches, we have identified the NF-kB p50 homodimer (p50:p50) as a regulator of IRF responses. First, unbiased genome-wide expression analysis revealed that p50 repressed a subset of IFN-inducible genes through a previously uncharacterized subclass of guanine-rich IRE (G-IRE) sequences, which was substantiated by biochemical and structural analyses. Second, mathematical modeling predicted that p50:p50 might enforce the stimulus-specificity of composite promoters. Indeed, the production of the antiviral regulator IFN-b was rendered stimulus-specific by the binding of p50:p50 to the G-IRE–containing IFNb enhancer to suppress cytotoxic IFN signaling. Specifically, a deficiency in p50 resulted in the inappropriate production of IFN-b in response to bacterial DNA sensed by Toll-like receptor 9. This role for NF-kB p50 in enforcing the specificity of the cellular response to pathogens by binding to a previously uncharacterized subset of IRE sequences alters our understanding of how the NF-kB and IRF signaling systems cooperate to regulate antimicrobial immunity.
Project description:The endoplasmic reticulum (ER) is an organelle associated with lipid metabolism. However, the involvement of the ER in nutritional status-dependent energy homeostasis is largely unknown. The results of this study demonstrate that IRE-1, an ER protein known to be involved in the unfolded protein response, and HSP-4, an ER chaperone, regulate expression of the novel fasting-induced lipases FIL-1 and FIL-2, which induce fat granule hydrolysis upon fasting in C. elegans. RNAi and ectopic expression experiments demostrated that FIL-1 and FIL-2 are both necessary and sufficient for fasting-induced fat granule breakdown. Failure of ire-1 and hsp-4 mutant animals to hydrolyze fat granules during starvation impaired their motility, which was rescued by glucose supplementation of their media, implicating the importance of ire-1/hsp-4-dependent lipolysis for energy supply from stored fat during fasting. Taken together, these data suggest that the ER-resident proteins IRE-1 and HSP-4 are key nutritional sensors that modulate expression of inducible lipases to maintain whole-body energy homeostasis in C. elegans. Synchronized L4 worms were divided into well-fed and 6 hours fasted samples for RNA extraction and hybridization on an Agilent microarray.
Project description:The endoplasmic reticulum (ER) is an organelle associated with lipid metabolism. However, the involvement of the ER in nutritional status-dependent energy homeostasis is largely unknown. The results of this study demonstrate that IRE-1, an ER protein known to be involved in the unfolded protein response, and HSP-4, an ER chaperone, regulate expression of the novel fasting-induced lipases FIL-1 and FIL-2, which induce fat granule hydrolysis upon fasting in C. elegans. RNAi and ectopic expression experiments demostrated that FIL-1 and FIL-2 are both necessary and sufficient for fasting-induced fat granule breakdown. Failure of ire-1 and hsp-4 mutant animals to hydrolyze fat granules during starvation impaired their motility, which was rescued by glucose supplementation of their media, implicating the importance of ire-1/hsp-4-dependent lipolysis for energy supply from stored fat during fasting. Taken together, these data suggest that the ER-resident proteins IRE-1 and HSP-4 are key nutritional sensors that modulate expression of inducible lipases to maintain whole-body energy homeostasis in C. elegans.
Project description:Background: Cellular iron homeostasis is regulated by iron regulatory proteins (IRP1 and IRP2) that sense iron levels (and other metabolic cues) and modulate mRNA translation or stability via interaction with iron regulatory elements (IREs). IRP2 is viewed as the primary regulator in liver, yet our previous datasets showing diurnal rhythms for certain IRE-containing mRNAs suggest a nuanced temporal control mechanism. The purpose of this study is to gain insights into the daily regulatory dynamics across IRE-bearing mRNAs, specific IRP involvement, and underlying systemic and cellular rhythmicity cues in mouse liver. Results: We uncover high-amplitude diurnal oscillations in the regulation of key IRE containing transcripts in liver, compatible with maximal IRP activity at the onset of the dark phase. Although IRP2 protein levels also exhibit some diurnal variations and peak at the light-dark transition, ribosome profiling in IRP2-deficient mice reveals that maximal repression of target mRNAs at this time-point still occurs. We further find that diurnal regulation of IRE-containing mRNAs can continue in the absence of a functional circadian clock as long as feeding is rhythmic. Conclusions: Our findings suggest temporally controlled redundancy in IRP activities, with IRP2 mediating regulation of IRE-containing transcripts in the light phase and redundancy, conceivably with IRP1, at dark onset. Moreover, we highlight the significance of feeding-associated signals in driving rhythmicity. Our work highlights the dynamic nature and regulatory complexity in a metabolic pathway that had previously been considered well-understood.
Project description:This study aims to explore the relationship between the respiratory virome, specifically bacteriophages, HERV and the host response in ARDS and to assess their value in predicting the prognosis of ARDS.
Project description:Cells transiently adapt to hypoxia by globally decreasing protein translation. However, specific proteins needed to respond to hypoxia evade this translational repression. The mechanisms of this phenomenon remain unclear. We screened for and identified small molecules that selectively decrease HIF-2a translation in an mTOR independent manner, by enhancing the binding of Iron Regulatory Protein 1 (IRP1) to a recently reported Iron-Responsive Element (IRE) within the 5â-untranslated region (UTR) of the HIF-2a message. Knocking down the expression of IRP1 by shRNA abolished the effect of the compounds. Hypoxia de-represses HIF-2a translation by disrupting the IRP1- HIF-2a IRE interaction. Thus, this chemical genetic analysis describes a molecular mechanism by which translation of the HIF-2a message is maintained during conditions of cellular hypoxia through inhibition of IRP-1 dependent repression. It also provides the chemical tools for studying this phenomenon. Experiment Overall Design: 3 replicate samples of 786-O human Clear Cell Renal Carcinoma cells untreated, mock treated with DMSO or treated with either of 4 HIF-2a inhibitor compounds identified by chemical genetic screening.
Project description:Cells transiently adapt to hypoxia by globally decreasing protein translation. However, specific proteins needed to respond to hypoxia evade this translational repression. The mechanisms of this phenomenon remain unclear. We screened for and identified small molecules that selectively decrease HIF-2a translation in an mTOR independent manner, by enhancing the binding of Iron Regulatory Protein 1 (IRP1) to a recently reported Iron-Responsive Element (IRE) within the 5’-untranslated region (UTR) of the HIF-2a message. Knocking down the expression of IRP1 by shRNA abolished the effect of the compounds. Hypoxia de-represses HIF-2a translation by disrupting the IRP1- HIF-2a IRE interaction. Thus, this chemical genetic analysis describes a molecular mechanism by which translation of the HIF-2a message is maintained during conditions of cellular hypoxia through inhibition of IRP-1 dependent repression. It also provides the chemical tools for studying this phenomenon.