Project description:Intercropping is a sustainable agricultural practice widely used around the world for enhancing resource use efficiency. However, short crops often grow in shade condition underneath the canopy of tall crops. Soybean is one of the most important oil crops and usually is planted in intercropping patterns. However, little is known about the acclimation responses of soybean leaves to shade in intercropping condition at the transcriptome level.
Project description:In cereal crop plants, sexual development and reproduction are key steps in producing seeds. However, genes responsible for reproductive function and development are largely unknown in soybean. Here, the soybean flower development was divided into three stages, namely the early stage(E), before pollination (BP) and post-pollination (PP). The flowers were hand-dissected into six tissues under the stereomicroscope, including anther (An), filament (Fi), stigma (St), style and ovary (SO), petal (Pe) and sepal (Se). All samples were processed for total RNA extraction and RNA sequencing (RNA-seq) data were generated in this study.
2024-05-31 | GSE143229 | GEO
Project description:Bacterial sequencing in tea-soybean intercropping system
Project description:Soybean plants were subjected to water deficit, heat stress, and combination of water deficit and heat stress. Flower parts, sepal, anther, ovary and stigma were collected from 8-10 different plants at R1 stage growing under three above mentioned stress conditions, and under control conditions 10 days after initiation of the stresses. Differential gene expression compared to control was studied using RNAseq method.
Project description:The nuclei of Glycine max from different tissues were collected. The samples were: soybean seed mid-maturation stage (10mm), seed late cotyledon stage (5mm), seed early cotyledon stage (3mm), seed heart stage (1mm), soybean green pods without seeds (stage), soybean flower bud (early flowering stage), soybean shoot apical meristem (stage), soybean trifoliate leaf (R5 stage), and soybean true leave (stage). The library construction was performed applying 10 Genomics technology.
2024-07-08 | GSE234864 | GEO
Project description:Soil microbial community response to Blueberry-soybean intercropping system
Project description:In order to identify candidate genes that are involved in soybean flowering transition in response to photoperiods, we performed RNA sequencing analysis under different photoperiod treatments. We identified genes exhibiting daily oscillation patterns under different photoperiod treatments, genes under control of maturity loci (E1, E2, E3 and E5), and genes that constitute the soybean flowering gene network.
Project description:Intercropping is a vital technology in resource-limited agricultural systems with low inputs. Peanut/maize intercropping enhances iron (Fe) nutrition in calcareous soil. Proteomic studies of the differences in peanut leaves, maize leaves and maize roots between intercropping and monocropping systems indicated that peanut/maize intercropping not only improves Fe availability in the rhizosphere but also influences the levels of proteins related to carbon and nitrogen metabolism. Moreover, intercropping may enhance stress resistance in the peanut plant (Xiong et al. 2013b). Although the mechanism and molecular ecological significance of peanut/maize intercropping have been investigated, little is known about the genes and/or gene products in peanut and maize roots that mediate the benefits of intercropping. In the present study, we investigated the transcriptomes of maize roots grown in intercropping and monocropping systems by microarray analysis. The results enabled exploration differentially expressed genes in intercropped maize. Peanut (Arachis hypogaea L. cv. Luhua14) and maize (Zea mays L. cv. Nongda108) seeds were grown in calcareous sandy soil in a greenhouse. The soil was enhanced with basal fertilizers [composition (mg·kg−1 soil): N, 100 (Ca (NO3)2·4H2O); P, 150 (KH2PO4); K, 100 (KCl); Mg, 50 (MgSO4·7H2O); Cu, 5 (CuSO4·5H2O); and Zn, 5 (ZnSO4·7H2O)]. The experiment consisted of three cropping treatments: peanut monocropping, maize monocropping and intercropping of peanut and maize. After germination of peanut for 10 days, maize was sown. Maize samples were harvested after 63 days of growth of peanut plants based on the degree of Fe chlorosis in the leaves of monocropped peanut. The leaves of monocropped peanut plants exhibited symptoms of Fe-deficiency chlorosis at 63 days, while the leaves of peanut plants intercropped with maize maintained a green color.
Project description:Soybean is an important economic crop for human diet, animal feeds and biodiesel due to high protein and oil content. Its productivity is significantly hampered by salt stress, which impairs plant growth and development by affecting gene expression, in part, through epigenetic modification of chromatin status. However, little is known about epigenetic regulation of stress response in soybean roots. Here, we used RNA-seq and ChIP-seq technologies to study the dynamics of genome-wide transcription and histone methylation patterns in soybean roots under salt stress. 8798 soybean genes changed their expression under salt stress treatment. Whole-genome ChIP-seq study of an epigenetic repressive mark, histone H3 lysine 27 trimethylation (H3K27me3), revealed the changes in H3K27me3 deposition during the response to salt stress. Unexpectedly, we found that most of the inactivation of genes under salt stress is strongly correlated with the de novo establishment of H3K27me3 in various parts of the promoter or coding regions where there is no H3K27me3 in control plants. In addition, the soybean histone modifiers were identified which may contribute to de novo histone methylation and gene silencing under salt stress. Thus, dynamic chromatin regulation, switch between active and inactive modes, occur at target loci in order to respond to salt stress in soybean. Our analysis demonstrates histone methylation modifications are correlated with the activation or inactivation of salt-inducible genes in soybean roots.